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MONDAY, JUNE 22, 1992 MONDAY, JUNE 22, 1992- Continued

SCHROEDINGER HALL SCHROEDINGER HALL
(KONGRESSHAUS ALPBACH) 11:00 am-l:20 pm
8:20 am-10:40 am MB, LASER INSTABILITIES
MA, DYNAMICS OF PULSE FORMATION Yakov I. Khanin, Academy of Sciences, Russia, Presider
William J. Firth, University of Strathclyde, U.K., Presider

11:00 am

8:20 am (Invited) MB1 Time inverted type-I intermittency of a single-mode
MA1 Nonlinear dynamics of ultrashort pulse formation, laser, D. Y. Tang, C. 0. Weiss, Physikalisch-Technische
speaker to be announced. Abstract not available at press time. Bundesanstalt, Germany. We report experimental observation
(p. 2) of an intermittent route to chaos of a single-mode laser. We show

that, by analyzing the experimental data time inverted, the
9:00 am observed intermittency can be described well by type-I inter-
MA2 Physical origin of self-mode-locking regime in solid- mittent dynamics. (p. 18)
state lasers, Michel Piche, Univ. Laval, Canada; Francois Salin,
Institut d'Optique, France. We describe how self-focusing in 11:20 am
nonlinear laser resonators leads to self-mode-locking. Changes MB2 Instability and chaos in laser oscillation between
in beam size produce an effective loss modulation. (p. 3) highly excited molecular vibrational states, Feng-Lei Hong,

Riken, Japan; Maki Tachikawa, Toshiki Sugawara, Takehisa
9:20 am Tohei, Todao Shimizu, Univ. Tokyo, Japan. Instability and chaos
MA3 Nonlinear effects in a ring resonator, A. M. Dunlop, in hot-band and sequence-band CO 2 lasers are used in the
D. R. Heatley, W. J. Firth, Univ. Strathclyde, U.K. An in-plane study of relaxation processes among highly excited molecular
ring resonator consisting of a nonlinear lens, a Gaussian aper- vibrational levels. (p. 21)
ture, and a gain medium is analyzed. Implications for unidirec-
tional lasing and Kerr-lens mode-locking are explored. (p. 6) 11:40 am

MB3 Modulation dynamics of a two-mode laser, Paul
9:40 am Mandel, M. Georgiou, Brussels Free Univ., Belgium, Kenju Ot-
MA4 Dynamics of nonlinearly coupled mode-locked laser suka, NTT Basic Research Laboratories. Japan. We show how
arrays, Song Wu, Sandra L. Smith, Richard L. Fork, Rensselaer the periodic solutions of a two-mode pump modulated class-B
Polytechnic Institute. We discuss the dynamics of arrays of laser are organized in the plane of field amplitude vs pump fre
nonlinearly coupled mode-locked laser oscillators as a source quency or amplitude. (p. 24)
of rapidly reconfigurable arrays of ultrashort optical pulses.
(p. 9) 12:00 m

MB4 Diversity of chaos In multimode solid-state lasers,
10:00 am E. A, Viktorov, A. A. Mak, 0. A. Orlov, V. I. Ustyugov, I. B.
MA5 Fast and slow self-phase modulation-induced pulse Vitrischak, S. 1. Vavilov State Optical Institute, Russia. The con-
shaping of subpicosecond pulses in semiconductor laser ditions for nonmtationary processes arising in the multimode
amplifiers, A. Dienes, M. Y. Hong, J. P. Heritage, UC-Davis, spectrum of solid-state lasers caused by different types of
Subpicosecond pulse evolution is calculated in semiconduc- mode-mode coupling have been investigated in theory and ex-
tor amplifiers, including dispersion and self-phase modulation periment. We discuss the crowding-a!. actors situation for free-
by saturation and by fast nonlinear index. Solitonlike compres- running generation and homoclinic chaos for intracavity SHG.
sion is predicted. (p. 11) (p. 26)

10:20 am 12:20 pm
MA6 Optical pulse evolution in fiber laser additive pulse MB5 Geometrical phases in self-pulsing lasers, C. Z. Ning,
mode-locking, K. A. Shore, Bath Univ., U.K.; T. Geisler, M. H. Haken, Univ. Stuttgar', Germany. A geometrical formulation
P. Sorenson, P. L. Christiansen, Technical Univ., Denmark; J. of phase accumulation in dissipative systems is given to establish
Mork, J. Mark, TFL, Denmark. The dynamics of optical pulse an exact relationshio between the geometrical phase and the
compression in an all-fiber APM configuration has been studied phase accumulation in lasers. (p. 29)
taking into account dispersion and phase bias effects. (p. 14)

12:40 pm
10:40 am-11:00 am COFFEE BREAK MB6 Dynamics of monovelocity atomic beam masers, A.

N. Orae ýsky, T. V. Sarkissian, Lebedev Physics Institute, Russia;
D. J. ,ones, D. K. Bandy, Oklahoma State Univ. The dynamics
of nonovelocity atomic beam masers is analyzed within the
framework of a two-level model. The loss-gain bifurcation curve.
irregular pulsations, multistability, and hysteresis are found.
(p. 32)

V



MONDAY, JUNE 22, 1992--Continued MONDAY, JUNE 22, 1992--Continued

1:00 pm MC7 Chaos and multistability in a bimodal CO2 laser with
MB7 Interaction of relaxation oscillations and instabili- a saturable absorber, K. Tanii, T. Sugawara, M. Tachikawa,
ty in a bidirectional Nd:YAG laser with a nonreciprocal ring F.-L. Hong, T. Tohei, T, Shimizu, Univ. Tokyo, Japan. A passively
cavity, P. A. Khandokhin, Ya. I. Khanin, Nizhny Novgorod, Rus- 0-switched CO 2 laser exhibits novel types of chaotic mode com-
sian Federation. It is shown that the phase nonreciprocity in- petition and multistable oscillation caused by transverse spatial
fluences the stability of the traveling wave regime due to chang- coupling of the lasing modes. (p. 51)
ing the interaction between different types of relaxation oscilla-
tion. The laser sensitivity to the sign of phase nonreciprocity MC8 Pulse pattern selection and low-dimensional
appears with detuning. (p. 36) modulation chaos in fiber lasers, M. Haelterman, S. Trillo,

S. Wabnitz, Fondazione Ugo Bordoni, Italy. We introduce a
1:20 pm-8:00 pm ATTENDEE FREE TIME dynamic description of the generation and propagation of

(Lunch and dinner on your own) dissipative temporal structures in active nonlinear fiber
resonators. (p. 54)

KRENEK HALL MC9 Paper withdrawn. (p. 57)

8:00 pm-10:00 pm MC10 Quasi vertical Hopt bifurcation for the multimode
MC, POSTER SESSION: 1 class-B laser, Thomas Carr, Thomas Erneux, Northwestern

Univ. We determine new amplitude equations for the quasiver-
MC1 Interferometric configurations for laser mode- tical Hopf bifurcation of the multimode class-B laser. (p. 58)
locking using a nonlinear active medium, Jean-Francois Cor-
mier, Michel Piche, Univ. Laval, Canada. We analyze the opera- MC1I Nonlinear dynamics of photon-phonon lasing in
tion and the stability of mode-locked lasers with nonlinear in- indirect gap semiconductors, L. A. Rivlin, A. A. Zadernov-
terferometric components, where the gain and the nonlinearity sky, Moscow Institute of Radioengineering, Electronics &
originate from the same material. (p. 38) Automation, Russia. Conditions are found for phonon lasing and

simultaneous lasing of photons and phonons in indirect gap
MC2 Mode-locking dynamics of synchronously pumped semiconductors. Stability, bistability and hysteresis of genera-
color-center lasers, W. Forysiak, Heriot-Watt Univ., U.K.; J. tion states are investigated. (p. 61)
V, Moloney, Univ. Arizona. Phase-wave fluctuations in syn-
chronously pumped color-center lasers lead to operating MC12 Paper withdrawn. (p. 63)
regimes including, quasistationary and fluctuating pulsing, spon-
taneous unidirectional lasing, and stochastic bidirectional swit- MC13 Instabilities in lasers with an injected delayed-
ching. (p. 41) feedback-controlled signal, N. A. Loiko, A. M. Samson,

Academy of Sciences of the Republic of Belarus. A theoretical
MC3 Optical bistabilities and autostabilization of the analysis is presented of structurally different attractors and
solid-state ring laser generation regimes under colliding mechanisms of chaos in lasers with a delayed feedback that
USPs dynamic self-diffraction, A. N. Shelaev, P. N. Lebedev provides a phase-locked or incoherent injected signal with an
Physics Inst., Russia. Abstract not available at press time. amplitude depending on the value of the lasing field. (p. 64)
(p. 43)

MC14 Eigenvalues and elgenvectors of the inhomogen-
MC4 Nonlinear dynamics of extremely short elec- eously broadened single-mode laser stability problem, V.
tromagnetic pulses in passive and active media, E. M. Tu. Toronov, L. A. Melnikov, Chemyshevsky State Univ., Russia.
Belenov, A, V. Nazarkin, P. N. Lebedev Physics Inst., Russia. New eigenvalues of the stability problem for the inhomogeneous-
Abstract not available at press time. (p. 44) ly broadened single-mode laser are found. The normal form

representation of the inhomogeneously broadened laser equa-
MC5 Coexistence of two attractors In lasers with In- tions of motion is considered. (p. 67)
coherent delayed feedback, Kenju Otsuka, Jyh-Long Chern,
NTT Basic Research Laboratories, Japan. Sustained periodic MC15 Successions of bifurcations in a laser with a
relaxation oscillations and regenerative periodic spiking oscilla- saturable absorber as the distributed system, L. A. Kotomt-
tions leading to chaotic oscillations are found to coexist in single- seva, A. M. Samson, Academy of Sciences of the Belarus
mode class-B lasers with incoherent delayed feedback. (p. 45) Republic. Results of a theoretical consideration of the dynamics

of a laser with a saturable absorber as the distributed system
MC6 Nonlocal adiabatic elimination in the Maxwell-Bloch are given, with detuning of the cavity frequency from the fre-
equation, P. Ru, P. K. Jakobsen, J. V. Moloney, Univ. Arizona. quency of the absorber. (p. 70)
The infinite-dimensional Maxwell-Bloch laser equations can be
adiabatically reduced to a nonlocal rate equation set devoid
of nonphysical instabilities. (p. 48)

Vi



MONDAY, JUNE 22, 1992--Continued MONDAY, JUNE 22, 1992--Continued

MC16 Pulse train instabilities and pulse structure evolu- MC23 Influence of velocity-changing collisions on single-
tion In a Nd:YAG laser with active mode-locking, L. A. mode inhomogeneously broadened laser dynamics, B.
Melnikov, G. N. Tatarkov, Chernyshevsky State Univ., Russia. Meziane, H. Ladjouze, ENSSAT, France. The inclusion of spec-
It is shown that low-frequency laser output instabilities are ac- tral cross-relaxation terms owing to strong velocity-changing col-
companied by complicated subnanosecond pulse structure lisions in the low-D equations is shown to bring noticeable
evolution under the influence of a small field fluctuation. (p. 73) modifications to the low-excitation spontaneous pulsation

waveforms that occur in bad cavity-configured high-gain lasers.
MC17 Transitions to chaos In a laser with a saturable ab- (p. 91)
sorber, S. A. Tatarkova, V. V. Tuchin, Chernyshevsky State
Univ., Russia. We studied the 5-D model for a laser with a MC24 Nonlinear dynamics of the broadband dye ring
saturable absorber which includes polarizations. We identified laser with regulated cavity dispersion, S. E. Vinogradov, A.
the transitions to chaos as period-doubling and intermittency. A. Kachanov, S. A. Kovalenko, E. A. Sviridenkov, V. V. Ivanov,
The multistability region is analyzed. (p. 76) Moscow, Russia. Abstract not available at press time. (p. 94)

MC18 Generalized finite-dimensional model of an In- MC25 From harmonic to pulsating periodic solutions in
homogeneously broadened single-mode laser, L. A. intracavity second harmonic generation, Nicolas Pettiaux,
Melnikov, V. Yu, Toronov, Chemyshevsky State Univ., Russia. Brussels Free Univ., Belgium; Thomas Erneux, Northwestern
The finite-dimensional dynamic model of a single-mode laser Univ. We show that the solution appearing above the bistabili-
with arbitrary inhomogeneous broadening is proposed and ty region in intracavity second-harmonic generation is pulsating
analyzed. (p. 79) rather than harmonic and can be described analytically. (p. 95)

MC19 Combination tone mode-mode coupling as an in- MC26 Transient behavior of fiber-optic Brillouin ring
stability mechanism in a dye ring laser, Ya. I. Khanin, 1. V. lasers, R. Hereth, D. Garus, F. Schliep, Ruhr Univ., Germany.
Koryukin, Nizhny Novgorod, Russian Federation. It is shown Transient oscillations of fiber-optic Brillouin ring lasers are in-
that combination mode-mode coupling is responsible for spec- vestigated. Analytical expressions for the damping rate and the
tral instabilities in a ring dye laser. The key role of nonequidis- frequency of oscillations are presented. (p. 98)
tant spacing of the modes in the combination tone mode-mode
coupling efficiency is proved. (p. 82) MC27 Density of probability distribution for quantum

electro-magnetic field, I. E. Protsenko, P. N. Lebedev Physics
MC20 Chaotic behavior associated with multicodimen- Insitute, Russia. Abstract not available at press time. (p. 101)
sional bifuractions in a laser with a saturable absorber,
A. G. Vladimirov, St. Petersburg State Univ., Russia. We con- MC28 Paper withdrawn. (p. 103)
sider a three-level:two-level model of a laser with a saturable
absorber including polarization in the absorbing medium. We MC29 High-dimensional dynamics in semiconductor
find the regions in laser parameter space in which different lasers, I. Fischer, J. Sacher, W. Elsasser, E. 0. Gobel, Mar-
chaotic attractors exist and investigate the influence of frequency burg Univ., Germany. A semiconductor laser coupled to a
detuning on the bifurcation sequences leading to chaos. Michelson-type double-resonator shows slow switching between
(p. 85) various regular and chaotic states, which are closely related

to the Ikeda delay scenario. (p. 104)
MC21 Dynamics of the solid-state laser with a saturable

absorber, E. A. Viktorov, A. A. Mak, 0. A. Orlov, V. I. Ustyugov, MC30 Transient multimode statistics in nearly single-
S. I. Vavilov State Optical Institute, Russia. Experimental results mode semiconductor lasers, A. Valle, L. Pesquera, Univ. Can-
of the dynamics of Nd:YAG laser with an intracavity Cs2 vapor tabria, Spain; P. Colet, M. San Miguel, Univ. Baleariac Islands,
cell are presented. Different types of lasing regime (regular and Spain. The transient statistics of nearly single-mode semicon-
chaotic) and theoretical models are discussed. (p. 88) ductor lasers is studied for lasers biased below threshold. The

side-mode excitation probability is obtained analytically and
MC22 Thin layer lasers, A. N. Oraevsky, Lebedev Physics numerically for different excitation currents and gain differences.
Institute, Russia. A theory of a thin layer laser is presented, i.e., (p. 106)
a laser whose active medium length along the wave propaga-
tion is less than the wavelength. It is shown that such a laser
exhibits a number of peculiarities compared with an ordinary
laser. (p. 90)

Vii



TUESDAY, JUNE 23, 1992 TUESDAY, JUNE 23, 1992--Continued

SCHROEDINGER HALL SCHROEDINGER HALL

8:20 am-10:20 am 10:40 am-12:40 pm
TuA, CONTROL OF CHAOS TuB, MULTIWAVE MIXING AND PHASE CONJUGATION
Fedor Mitschke. Univ. Hanover, Germany, Presider Rajarshi Roy, Georgia Institute of Technology, Presider

8:20 am (Invited) 10:40 am
TuAl Controlling chaos, Celso Grebogi, Univ. Maryland. A TuBi Deterministic dynamics of the stimulated scatter-
method is proposed whereby motion on a chaotic attractor can Ing phenomenon, R. G. Harrison. Weiping Lu, A. Johnstone,
be converted to a desired attracting time-periodic motion or D. S. Lim, J. S. Uppal, Heriot-Watt Univ., U.K. Cavity feedback
steady state by making only small time-dependent perturba- is experimentally shown to dramatically modify the dynamics
tions of some set of available system parameters. (p. 110) of stimulated scattering, the results substantiating a recent

generalized treatment showing deterministic dynamics to be
9:00 am generic to these interactions. (p. 126)
TuA2 Control of chaos in a multimode solid-state laser:
numerical results, P. Colet, Rajarshi Roy, Georgia Institute of 11:00 am
Technology. We have studied a numerical model for the con- TuB2 Cascaded stimulated Brillouin scattering in high-
trol of a chaotic multimode solid-state laser using the occasional finesse all-fiber ring resonators, Dieter Garus, Ralf Hereth,
proportional feedback technique. (p. 113) Ruhr Univ., Germany. Multiple stimulated Brillouin scattering was

observed in all-fiber ring resonators. A simple theoretical model
9:20 am allows the calculation of pump thresholds and laser output
TuA3 Experimental control of a chaotic laser system, Ra- power. (p. 129)
jarshi Roy, T. W. Murphy, Jr., T. D, Maier, Zelda Gills, Georgia
Institute of Technology: E. R. Hunt, Ohio Univ. Dynamic con- 11:20 am
trol of a chaotic laser system has been demonstrated experimen- TuB3 Hamiltonian dynamics of parametric nonlinear
tally by occasional proportional feedback. A wide variety of wave mixing, S. Trillo, S. Wabnitz, Fondazione Ugo Bordoni,
stable, complex, periodic waveforms may be generated. Italy. We investigate the Hamiltonian dynamics of parametric
(p. 116) instabilities and chaos in media with both quadratic and cubic

nonlinearities. (p. 132)
9:40 am
TuA4 Control and characterization of unstable stationary 11:40 am
states, S. Bielawski, M. Bouazaoui, D. Derozier, P. Glorieux, TuB4 Observation of chaos In off-Bragg photorefractive
Lille Univ., France. The characterization of unstable stationary four-wave mixing, Kenneth D. Shaw, USAF Phillips Laboratory.
states is reported using an external feedback control which also Chaotic oscillations have been observed in the phase-conjugate
stabilizes the spontaneous intensity oscillations of an optical fiber intensity of an externally pumped photorefractive phase-
laser. (p. 119) conjugate mirror when one of the pumping beams deviates

slightly from the Bragg angle. (p. 135)
10:00 am
TuA5 Controlling laser chaos, S. Bielawski, M. Bouazaoui, 12:00 m
D. Derozier, P. Glorieux, Lille Univ., France. We have achiev- TuB5 Self- and mutual phase conjugation via thin layers,
ed experimental control of chaos in a doped fiber laser using B. Ya. Zeldovich, I. V. Goosev, V. A. Krivoschekov, Chelyabinsk
a method slightly different from that proposed by Ott et al. Technical Univ., Russia. Mutual phase conjugation is suggested
(p. 122) via two thin layers, e.g., quantum well samples, with cross phase

nonlinearity of opposite sign. Experiments are reported. (p. 138)
10:20 am-10:40 am COFFEE BREAK

12:20 pm
TuB6 Uses of fiber-optic interferometry In nonlinear
dynamics, S. T. Vohra, F. Bucholtz, U.S. Naval Research
Laboratory. Extremely high strain resolution (:5 10-12/- Hz) is
possible with fiber-optic interferometers, which makes them
ideally suited for studying the nonlinear strain dynamics of
various materials. (p. 141)

12:40 pm-8:00 pm ATTENDEE FREE TIME
(Lunch and dinner on your own)

Viii



TUESDAY, JUNE 23, 1992-Continued TUESDAY, JUNE 23, 1992-Continued

KRENEK HALL TuC8 Simple modeling of feedback-induced properties
in semiconductor lasers, B. Meziane. P. Besnard, G. Stephan,

8:00 pm-10:00 pm ENSSAT, France. We transform the infinite-dimensional Lang/
TuC, POSTER SESSION: 2 Kobayashi rate equations into a much more numerically trac-

table model, which is shown to describe the well-known distinct
TuC1 Transverse modes of microchip solid-state lasers, regimes of operation of an external-cavity semiconductor laser.
G. K. Harkness, W, J. Firth, Univ. Strathclyde, U.K. We describe (p. 166)
a model for microchip lasers, presenting results on their
transverse modes, thresholds, operating frequencies, and TuC9 Asymmetric behavior and kink shaping by optical
dynamic stability at and well beyond threshold. (p. 146) feedback, F. Brivio, Italtel SIT, Italy; S. Mazzoleni, M. Milani,

Univ. Milan, Italy. A nonhomogeneous distribution of carriers
TuC2 Hexagonal transverse patterns In the interaction inside a semiconductor laser active cavity is induced by op-
of counterpropagated light beams: the many-body ap- tical reinjection, because of its spatial asymmetry. The
proach, A. A. Afanasev, B. A. Samson, V. M. Volkov, Academy characteristic P-I curve is analytically derived, and the nonlinear-
of Sciences of the Republic of Belarus. We propose to consider ity (kink) just above threshold in the presence of optical feed-
the output hexagonal pattern in the counterpropagating interac- back can be derived. (p. 169)
tion of light beams in a nonlinear medium as the dense pack-
ing of filaments in a finite volume, as well as to analyze the spatial TuC10 Switch-on time statistics of a single-mode
pattern formation from the point of view of many-body theory. semiconductor laser with an injected signal, M. C. Torrent,
(p. 149) Catalonia Polytechnic Univ., Spain, J. M. Sancho, Barcelona

Univ., Spain; M. San Miguel, S. Balle, Univ. Baleariac Islands,
TuC3 Spatial symmetry breaking and coexistence of at- Spain. Passage time statistics of gain-switched single-mode
tractors in a nonlinear ring cavity, M. Sauer, F. Kaiser, Darm- semiconductor lasers is sensitive to r injected signal. An op-
stadt Institute for Applied Physics, Germany. Resonances be- timum detuning proportional to the a factor is found. (p. 172)
tween internal and external transverse space frequencies in a
passive optical system are investigated. They lead to symmetry TuC11 Dynamics of passive FM locking in semiconduc-
breaking bifurcations and to the coexistence of periodic attrac- tor lasers, K. A. Shore, W. M. Yee, Bath Univ., U.K. A
tors. (p. 151) multimode formalism has been utilized to study FM locking aris-

ing from nonlinear gain in semiconductor lasers. An admixture
TuC4 Dynamics of transverse field structure in a unidirec- of FM and AM locked states inhibits pure FM operation.
tional ring laser with fast-relaxed active medium, I. V. (p. 175)
Veshneva, L. A. Melnikov, A. A. Sokolov, G. N. Tatarkov, Cher-
nyshevsky State Univ., Russia. Steady-state and beat regimes TuC12 Light dynamics of a bistable element chain, Yu.
are studied using the transverse flexible modes having the beam A. Logvin, A. M. Samson, Academy of Sciences of the Republic
parameter as a dynamic variable. The axial symmetrical case of Belarus. The light dynamics of a chain of bistable thin films
and fields with defects are considered. (p. 154) is theoretically considered. It is assumed that bistable elements

are arranged in line and coupled by the light beams, Regular
TuC5 Dynamic 3-D propagation of light pulses, G. G. and chaotic dynamic regimes of the system are discussed.
Luther, J. V. Moloney, D. E. Hart, E. M. Wright, Univ. Arizona. (p. 177)
Several characteristic features of the propagation of 3-D light
pulses in media with dispersion, spectral absorption, and TuC13 Effects of nonlinear gain on the stability of two-
noninstantaneous cubic nonlinearity are illustrated. (p. 157) element evanescently coupled laser arrays, D. Nichols, H.

Winful, Univ. Michigan. We have studied the effect of nonlinear
TuC6 Phase singularities in a Fabry-Perot resonator with gain saturation on the stability of evanescently coupled laser
an intracavity nematic liquid crystal film, M. Kreuzer, R. arrays and found that gain saturation facilitates stable operation.
Neubecker, T. Tshudi, Darmstadt Institute of Applied Physics, (p. 179)
Germany. We present what we believe to be the first experimen-
tal evidence of optical vortices as a concomitant phenomenon TuC14 Bifurcation analysis of bistable systems disturb-
of pattern formation in a nonlinear Fabry-Perot containing a thin ed by external noise: an application of cumulant analysis,
liquid crystal film. (p. 160) V. S. Anischenko, A. B. Neiman, Chernyshevsky State Univ.,

Russia. Abstract not available at press time. (p. 182)
TuC7 Laser rate equations with phase-sensitive interac-
tions, C. Etrich, Paul Mandel, Brussels Free Univ., Belgium, TuCiS Static and dynamic optical bistability in Fabry-
Kenju Otsuka, NTT Basic Research Laboratories, Japan. We Perot and distributed feedback resonators with OW struc-
study the influence of space-dependent mode-mode coupling tures, F. Castelli, L A. Lugiato, Milan Univ., Italy. G P. Bava.
oscillating at wavenumber differences in the framework of Turin Polytechnic, Italy; P. Debernardi, CESPA-CNR, Italy. We
multimode rate equations. (p. 163) study the static and the dynamic behavior of optically bistable

systems including a MOW structure. The analysis is based on
an accurate description of the optical nonlinearities in the system.
(p. 183)

ix
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TuC16 Dynamical aspects of polarization-induced swit- TuC24 Phase quasi-integral for stimulated Raman scat-
ching phenomena in diffusively nonlinear Fabry-Perot tering initiated by quantum fluctuations and statistics of
resonators, J. Danckaert, H. Thienpont, I. Veretennicoff, solitonlike random pulses in depleted pump, S. Ya. Kilin,
Brussels Free Univ., Belgium. The dynamics of polarization- Academy of Sciences of the Belarus Republic. The phase quasi-
induced switching phenomena occurring in Fabry-Perot integral for SRS is found: the relative phase of laser Stokes, and
resonators with a diffusive nonlinearity are studied, both for low- polarization waves is nearly conserved during their propagation
and high-finesse resonators. (p. 186) in Raman media. Due to this quasi-integral the temporal statistics

of solitonlike pulses in depleted pump is defined by phase
TuC17 Optothermal bistable cavities with localized ab- statistics in the SRS linear stage. (p. 206)
sorption under modulated excitation, Jordi Farjas, Francesc
Boixader, Gaspar Orriols, Barcelona Univ. Automona, Spain; TuC25 Multiparametric criticality in a laser system, A. P
Josep Massaneda, Francesc Pi, Catalonia Univ. Politecnica, Kuznetsov, S. P Kuznetsov, I. R. Sataev, Saratov Institute of
Spain. We present numerical and experimental results show- Radioengineering & Electronics, Russia. The hierarchy of critical-
ing complex dynamics in the response of an optothermal ity types (Feigenbaum, tricritical, bicritical, multicritical) is found
bistable cavity with an absorbing mirror and a transparent bilayer at the onset of chaos in equations of a laser pumped by another
spacer of opposite thermo-optic materials, which is irradiated 0-switched laser. (p. 209)
with modulated light. (p. 189)

TuC26 Bifurcation and chaos in the presence of external
TuC18 Effect of initial phase factor on the properties of noise, V S. Anishchenko, A. B. Neiman, Chernyshevsky State
an electro-optical bistable system, Zhiren Zheng, Jinyue Univ, Russia. Cumulative analysis is used for studies of nonwhite
Gao, Jilin Univ., P.R.C. The effect of initial phase factor on noise influence on some dynamic system bifurcations. The in-
bistability, instability, resonance, and frequency locking has fluence of external noise on dynamic chaos is investigated in the
been studied for a hybrid bistable system with a delay. Lorenz model. (p. 212)
(p. 192)

TuC27 Rossler chaos in optothermal bistability with
TuC19 Dynamic optical bistability in a semiconductor- localized absorption, Ramon Herrero, Francesc Boixader,
doped glass etalon, Chunfei Li, Yinglin Song, Zizhong Zha, Gaspar Orriols, Barcelona Autonomous Univ., Spain; Joan I.
Lei Zhang, Harbin Institute of Technology, P.R.C. A dynamic Rosell, Francesc Pi, Catalonia Polytechnic Univ., Spain. We pre-
theory of transient optical bistability in a Cd-S-Se-doped glass sent numerical and experimental evidences of Rossler chaos in
etalon is presented. The quasistable condition for transient op- optothermal bistable cavities with an absorbing mirror and a
tical bistability is T, > Td 2: T,. (p. 195) transparent trilayer spacer of alternatively opposite thermo-optic

materials. (p. 215)
TuC20 New types of switching waves and diffractive

autosolitons in wide-aperture nonlinear interferometers TuC28 Pulse statistics of modulated gas lasers, A. Valle,
and lasers, S. V. Fedorov, G. V. Khodova, K. S. Kostritskaya, L. Pesquera, M. A. Rodriguez, Univ. Cantabria, Spain. The
N. N. Rosanov, S. I. Vavilov State Optical Institute, Russia. We statistics of turn-on delay time, maximum light intensity and pulse
propose and analyze the equations of motion of the diffractive width of class-A single-mode lasers is analyzed. An analytic ex-
autosoliton in a nonlinear interferometer excited by nonuniform pression for the switch-on time is obtained, in good agreement
radiation, and in a laser with a saturable absorber. New types with numerical simulations. (p. 218)
of patterns are described in bi- and multistable interferometers.
(p. 198)

TuC21 Squeezing in a wide-aperture nonlinear Inter-
ferometer: transverse effects, A. V. Belinsky, Moscow State
Univ., Russia; N. N. Rosanov, S. I. Vavilov State Optical Institute,
Russia. We analyze squeezed states of light in an interferometer
filled with Kerr media and excited by external radiation. Effec-
tive noise depression in a certain range of temporal and spatial
frequencies is predicted. (p. 199)

uC22 Theory of a photorefractive resonator, H.
Zeghlache, L. Dambly, P. Glorieux, Lille Univ. Sciences et
Technologies, France. We analyze two-wave mixing in an
unidirectional ring cavity containing a photorefractive material
and give an analytical expression which approaches the cavity-
mode frequency shift. (p. 200)

TuC23 Solvable models of optical resonators, A. V. Malev,
St. Petersburg State Univ., Russia. Solvable models of open
optical resonators in a 1-D approach are considered. Construc-
tion was carried out based on the self-adjoint extension theory
of symmetrical operators. (p. 203)

X
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SCHROEDINGER HALL 10:40 am
WA7 Interaction of spatiotemporal wave structures in

8:20 am-11:20 am nonlinear optical resonators: New routes in optical tur-
WA, SPATIAL PATTERN FORMATION AND bulence, M. A. Vorontsov, Moscow State Univ., Russia. Abstract
DYNAMICS: 1 not available at press time. (p. 238)
Neal B. Abraham, Bryn Mawr College, Presider

11:00 am-11:20 am COFFEE BREAK
8:20 am (Invited)
WA1 Patterns and their defects, Pierre Coullet, Univ. Nice,
France. Abstract not available at press time. (p. 222) 11:20 am-1:20 pm

WB, SPATIAL PATTERN FORMATION AND
9:00 am DYNAMICS: 2
WA2 Statistics of topological defects in linear and Paul Mandel, Brussels Free University, Belgium, Presider
nonlinear optics, P L. Ramazza, S. Residori, G. Giacomelli,
Italian National Institute of Optics, E. T Arecchi, Univ. Florence, 11:20 am
Italy. We show that the statistical distribution of the number of WB1 Dynamic transverse laser patterns, M. Brambilla, M.
defects in an optical field does not discriminate between the linear Cattaneo, L. A. Lugiato, R. Pirovano, F. Prati, Milan Univ., Italy;
and nonlinear case. (p. 223) A. J. Kent, G-L. Oppo, Univ Strathclyde, UK.; A. B. Coates, C.

0. Weiss, Physikalisch-Technische Bundesanstalt, Germany; C.
9:20 am Green, E. J. DAngelo, J. R. Tredicce, Drexel Univ We consider
WA3 Pattern formation and pattern dynamics in passive a cylindrically symmetrical laser with spherical mirrors, and
systems, M. Brambilla, F Castelli, A. Gatti, L. A. Lugiato, F Prati, describe the dynamics in terms of the competition among dif-
Milan Univ, Italy. We report on phenomena of pattern forma- ferent Gauss-Laguerre modes of the cavity. (p. 240)
tion and pattern dynamics in the transverse profile of the field
propagating in an absorbing collection of two-level atoms in a 11:40 am
ring resonator with spherical mirrors. (p. 226) WB2 Pattern formation in a multimode CO 2 laser, D. Hen-

nequin, C. Lepers, E. Louvergneaux, D. Dangoisse, P Glorieux,
9:40 am Lille Univ, France. The spatiotemporal behavior of a
WA4 Symmetry breaking and vortices in a sodium-filled multitransverse-mode Fabry-Perot CO2 laser with and without
Fabry-Perot resonator, L. M. Hoffer, G.L. Lippi, J. Nalik, C. an intracavity saturable absorber is considered experimentally.
Vorgerd, W. Lange, Wesffalische Wilhelms-Univ, Germany. Sym- Periodic alternation and antiphasing are seen. (p. 242)
metry broken patterns and vortices are observed in a high
Fresnel number nonlinear passive resonator where only a few 12:00 m
lowest-order modes are selectively excited. (p. 229) WB3 Defect dynamics in the evolution of the transverse

pattern of a laser, N. B. Abraham, S. Balle, Z. Chen, Bryn Mawr
10:00 am College; E. J. DAngelo, J. R. Tredicce, Drexel Univ Numerical
WAS Spatial and temporal behavior of instabilities solutions of the Maxwell-Bloch equations reveal evolving pat-
generated by counterpropagating laser beams in rubidium terns involving many radial and angular modes, which can be
vapor, A. Blouin, M. Pinard, A. Maitre, G. Grynberg, ENS- simply described in terms of the motion and interaction of defects.
Laboratoire de Spectroscopie Hertzienne, France; J. R. Rios (p. 245)
Leite, Univ Federal de Pernambuco, Brazil; R. W. Boyd, Univ
Rochester Spatial and temporal behaviors of instabilities aris- 12:20 pm
ing from the interaction of counterpropagating laser beams with WB4 Optical vortices and dark spatial solitons, C. 0.
rubidium atoms are studied for different patterns vs laser fre- Weiss, PTB-Braunschweig, Germany; K. Staliunas, Vilnius Univ.,
quency and intensity. (p. 232) Lithuania. The dynamics of optical vortices in a laser beam cross-

section is investigated. The optical vortices are treated as per-
10:20 am turbed dark solitons of the 2-D nonlinear Schrodinger equation.
WA6 Two-dimensional transverse patterns in optical (p. 248)
bistability, W. J. Firth, G. S. McDonald, A. J. Scroggie, Univ.
Strathclyde, UK.; L. A. Lugiato, Milan Univ, Italy; R. Lefever, 12:40 pm
Brussels Free Univ., Belgium. The mean-field dispersive model WB5 Turbulent patterns in wide-gain section two-level
of optical bistability is shown to yield hexagonal and other struc- and Raman lasers, P. K. Jakobsen, S. G. Wenden, J. V.
tures. The study is both analytical, using bifurcation theory, and Moloney, A. C. Newell, Univ. Arizona. We establish that a deep
numerical. (p. 235) analogy exists between turbulent convection patterns in

Rayleigh-Benard fluid convection and the output of wide-gain
section two-level and Raman lasers. (p. 251)

Xi
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1:00 pm SCHROEDINGER HALL
W86 Pattern formation due to nonlinear counterpropaga-
tion In Kerr and Brillouin-active media, J. B. Geddes, R In- 8:20 am-10:40 am
dik, J. V. Moloney, Univ. Arizona; W. J. Firth, G. S. McDonald, ThA, SEMICONDUCTOR DEVICE DYNAMICS
Univ. Strathclyde, U.K. Analytical and numerical studies are Daan Lenstra, Amsterdam Free University, The
reported for counterpropagating beams in both Kerr and Netherlands, Presider
Brillouin-active slabs. The dynamics of hexagonal pattern for-
mation is discussed. (p. 254) 8:20 am

ThA1 Polarization bistability in laser diodes, Hitoshi
1:20 pm-4:00 pm CONFERENCE RECEPTION AND Kawaguchi, Tomoyoshi Inie, Naohiro Tan-no. Yamagata Univ.,

ATTENDEE FREE TIME Japan. We report a new form of pitchfork bifurcationlike polariza-
tion bistability in ' er diodes which has major speed advan-
tages over conventional polarization bistability. (p. 262,SCHROEDINGER HALL

8:40 am
4:00 pm-5:20 pm ThA2 Polarization mode sitching and bistability in
WC, SPATIAL PATTERN FORMATION AND semiconductor lasers, A. Klehr, A. Barwolff, G Berger, R.
DYNAMICS: 3 Muller, M. Voss, Institut fur Nichtlineare Optik und Kurz-
Robert G. Harrison, Heriot-Watt University, U.K., Presider zeitspektroskopie, Germany. The influence of lateral

waveguiding on switching behavior between emission states
4:00 pm (Invited) of differently polarized modes in ridge-waveguide lasers wa3
WC1 Interference and dislocation patterns in linear investigated. Measured switching time was 50 ps. (p. 266)
waves, Michael Berry, Wills Physics Laboratory, U.K. Phase
singularities (dislocations and disclinations) are generic in waves, 9:00 am
linear or not, and occur in light, sound, microwaves, quantum ThA3 Transition in the coherence collapse of semicon-
waves and the tides. They are complementary to the caustic ductor lasers with external optical feedback: two types of
singularities of geometrical optics. (p. 258) low frequency fluctuation, J. Sacher, W. Elsasser, E. 0.

Gobel, Marburg Univ., Germany. We demonstrate a transition
4:40 pm (Invited) between ultrahigh-dimensional motion and a high-dimensional
WC2 Pattern formation, pattern recognition, and attractor in the coherence collapse of semiconductor lasers with
associative memory, H. Haken, Universitat Stuttgart, Ger- external optical feedback. (p. 269)
many. In physical and nonphysical systems, spontaneous pat-
tern formation can be treated by concepts of order parameters 9:20 am
and enslaving developed by synergetics. These principles allow ThA4 Dynamic instability in delay-coupled semiconduc-
one to devise analogue computers for pattern recognition and tor lasers, David J. Bossert, Richard K. DeFreez, Oregon
associative memory. (p. 259) Graduate Institute of Science & Technology; Gregory C. Dente,

G.C.D. Associates; Herbert G. Winful, Univ. Michigan. Self- and
5:20 pm-8:00 pm ATTENDEE FREE TIME mutually coupled semiconductor lasers are examined ex-

(Dinner on your own) perimentally and theoretically. Coupling delays and carrier-
dependent refractive index result in dynamic instability at
moderate coupling levels. (p. 272)SCHROEDINGER HALL

8:00 pm-10:00 pm 9:40 am
WD, ROUNDTABLE DISCUSSION ThA5 Modulated semiconductor laser: a Hamiltonian
Jerome V Moloney, University of Arizona, Presider search for its periodic attractors, P. C. De Jagher, D. Lenstra,

Amsterdam Free Univ., The Netherlands. Using an analytic ap-
proximation, the values of the modulation index which permit
periodic output are determined; it is argued that multistability
can occur. (p. 275)

10:00 am
ThA6 Chaos in semiconductor lasers, Hua Li. Jun Ye. John
G. Mclnerney, Univ. New Mexico. We report investigations of
the onset of chaos in a semiconductor laser with weak external
optical reflection, and in an AR-coated semiconductor laser in
an external cavity. (p. 278)

xii
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10:20 am 12:40 pm
ThA7 Injection locking of a vertical-cavity surface- ThB6 Coupled elements, phase transitions, and localiz-
emitting laser, D. Boggavarapu, J. W. Grantham, Y. Z. Hu, ed order, Martin McCall, Ziping Jiang, Imperial College, U.K.
H. M. Gibbs. G. Khitrova, S. Koch, M. Sargent I1I, Univ. Arizona: We examine a distributed nonlinear optical network based on
Weng W. Chow, Sandia NationalLaboratories. Continuous-wave a discretization of the Ginzburg-Landau equation. We
laser injection into a vertical-cavity surface-emitting laser exhibits demonstrate phase transition and pattern localization effects.
pushing and quenching of lasing and new frequency genera- (p. 300)
tion shifted up to 50 GHz. (p. 281)

1:00 pm-4:00 pm ATTENDEE FREE TIME
10:40 am-11:00 am COFFEE BREAK (Lunch on your own)

SCHROEDINGER HALL SCHROEDINGER HALL

11:00 am-1:00 pm 4:00 pm-5:20 pm
ThB, LASER ARRAY DYNAMICS ThC, INVITED PAPER SESSION
Peter Davis, A TR Optical and Radio Communications Kenju Otsuka, NTT Basic Research Laboratories, Japan,
Research Laboratories, Japan, Presider Presider

11:00 am 4:00 pm (Invited)
ThB1 Factorial dynamic pattern memory in globally ThC1 Network of chaotic elements, Kunihiko Kaneko, Univ.
coupled lasers, Kenju Otsuka, Jyh-Long Chern, NTT Basic Tokyo, Japan. Network of chaotic elements exhibits coherent,
Research Laboratories, Japan. Chaotic dynamics in globally ordered, partially ordered, and turbulent phases according to
coupled modulated lasers have been switched into stable or- the clusterings of oscillations. Novel features include chaotic
bits, including antiphase periodic states and clustered states, itinerancy, hierarchical clustering, partition complexity. and hid-
by injection seeding. (p. 286) den coherence. Relevance to information processing is discuss-

ed. (p. 304)
11:20 am
ThB2 Coherence and phase dynamics of spatially coupl- 4:40 pm (Invited)
ed solid-state lasers, Larry Fabiny, P. Colet, Ratarshi Roy, ThC2 Spatial correlation dimension and critical
Georgia Institute of Technology. Experimental measurements phenomena In complex Ginzburg-Lardan mode, M.
of the mutual coherence of two lasers with spatially overlapp- Rabinovich, Nighny Novgorod, Russia. Abstract not available
ing fields in the active medium are reported and compared with at press time. (p. 307)
numerical simulations. (p. 289)

5:20 pm-8:00 pm ATTENDEE FREE TIME
11:40 am (Dinner on your own)
ThB3 Dynamics of a twin stripe semiconductor laser ar-
ray: coupled-mode theory vs the PDE model, Lutfur
Rahman, Herbert G. Winful, Univ. Michigan. The PDE model SCHROEDINGER HALL
for the dynamics of a twin stripe semiconductor laser array is
reduced to a coupled-mode ODE model. Dynamic 8:00 pm-10:00 pm
characteristics for the two models are compared. (p. 292) ThD, POSTDEADLINE PAPER SESSION

Pierre Glorieux, Universite des Sciences et Techniques de
12:00 m Lille Flandres-Artois, France, Presider
ThB4 Space-time dynamics of semiconductor lasers:
many-body theory and phenomenological models, J. V.
Moloney, P. Ru, R. Indik, S. W. Koch, E. Wright, Univ. Arizona.
We study the dynamical behavior of semiconductor lasers in-
cluding many-body effects and investigate the validity of the
phenomenological laser model. (p. 295)

12:20 pm
ThB5 Bifurcation to standing and traveling waves in large
laser arrays, Ruo-ding Li, Thomas Erneux, Northwestern Univ.
We consider the equations for N-coupled semiconductor lasers
and investigate the bifurcations to periodic standing and travel-
ing wave solutions in the limit N large. (p. 297)

xiii



FRIDAY, JUNE 26, 1992 FRIDAY, JUNE 26, 1992--Continued

SCHROEDINGER HALL 10:40 am-12:00 m
FB, SPECIAL TOPICS IN CHAOS

8:20 am-10:20 am Govind R. Agrawal, University of Rochester, Presider
FA, OPTICAL CHAOS AND NOISE
M San Miguel, University of Balearic Islands, Spain, 10:40 am
Presider FB1 Radiation trapping: a new mechanism for chaos In

optical systems, M. Moiler, W. Lange, Westfahsche Wilhelms-
8:20 am Univ., Germany. The effect of radiation trapping together with a
FAI Chaos vs noise in experimental data, F. Mitschke, M. static magnetic field can give rise to chaotic dynamic behavior
Dammig, C. Boden, Hanover Univ., Germany. The distinction in a sodium-filled Fabry-Perot resonator (p. 330)
of chaos vs noise in experimental data with the recently pro-
posed method of surrogate data is vastly superior to previous 11:00 am
approaches (p. 310). FB2 Space-time representation of a delayed dynamical

system, F. T Arecchi, G. Giacomelli, A. Lapucci, R. Meucci,
8:40 am Italian National Institute of Optics. A nonlinear system with delayed
FA2 Quantum noise reduction in a spatial dissipative feedback, whenever the delay time is much longer than the in-
structure, L. A. Lugiato, F. Castelli, Milan Univ., Italy. We trinsic correlation time, displays two widely separated time scales.
demonstrate the presence of quantum mechanical order in the In such a case, a 2-D representation allows use of recognition
transverse roll pattern predicted by a model of a passive algorithms developed for spatiotemporal chaos. (p. 333)
nonlinear optical system. Precisely, the signal beams in the far
field are fully quantum correlated twin beams. (p. 313) 11:20 am

FB3 Generalized approach to the theory of radiation-
9:00 am atom interaction, Weihan Tan, Shanghai Institute of Optics &
FA3 Influence of noise and of spatiotemporal nonunifor- Fine Mechanics, PR.C.; Weiping Lu, Robert G. Harrison, Heriot-
mity on the evolution of optically nonlinear systems, H. Watt Univ., UK. We develop a unified approach to the theory
Issler, J. Grohs, M. Kuball, J. Steffen, C. Klingshirn, Univ. of radiation-atom interaction for arbitrary field strengths in which
Kaiserslautern, Germany; S. Apanasevich, A. Lyakhnovich, conventional perturbation and dressed atom theories have been
Academy of Science of the Republic of Belarus. We report on considered. (p. 336)
spatial structure formation in optically nonlinear elements and
the influence of noise on self-oscillations of a hybrid ring 11:40 am
resonator containing such elements. (p. 316) FB4 Neural network applictions to optical chaos, S. D.

Pethel, C. M. Bowden, C. C. Sung, Redstone Arsenal. Neural
9:20 am networks trained on chaotic time series are shown to constitute
FA4 Transient statistics In the switch-on of class B lasers, global approximations to the attractors. Data window extension
S. Balle, M. San Miguel, Univ. Baleariac Islands, Spain; N. B. is demonstrated for stationary time series. (p. 339)
Abraham, Bryn Mawr College. Transient statistics in the nonlinear
regime are a mapping of passage time statistics. Different cases 12:00 m
and scaling laws are discussed. (p. 319) FB5 Mechanisms of amplification without Inversion, Olga

Kocharovskaya, Russian Academy of Sciences. We analyze the
9:40 am physical origin of the gain in all schemes of inversionless amplifica-
FA5 Two-peaked passage time statistics in a "-switched tion proposed to date and define two different mechanisms
CO2 laser near threshold, R. Meucci, M. Ciofini, F. T. Arec- responsible for this process. (p. 342)
chi, Peng-ye Wang, Italian National Institute of Optics. The ap-
pearance of two-peaked passage time distributions in a 0- 12:20 pm
switched CO 2 laser has been explained as a consequence of FB6 Polarizatlon-sensitive population trapping in an op-
the population noise near threshold, (p. 322) tically pumped laser, E. Roldan, R. Vilaseca, Univ Valencia,

Spain; G. J. de Valcarcel, Valencia Univ. Politecnica, Spain; M.
10:00 am Arjona, J. Pujol, Catalonia Univ Politecnica, Spain; R. Corbalan,
FA6 Period-one oscillation In a chaotic system with Barcelona Univ. Autonoma, Spain. An optically pumped laser
multimodal mapping, Yun Liu, Junji Ohtsubo, Shizuoka Univ., with parallel or orthogonal linear field polarizations is investigated
Japan. Period-one oscillation is observed in a chaotic system in terms of dressed states. Polarization-dependent inversion
consisting of a laser diode active interferometer. The conditions without lasing is found. (p. 343)
for such oscillations are examined. (p. 328)

10:20 am-10:40 am COFFEE BREAK

xiv



Dynamics of Pulse Formation

MA 8:20am-10:20am
Schroedinger Hall

William J. Firth, Presider
Strathclyde University, United Kingdom



2 / MA1-1

Nonlinear Dynamics of Ultrashort Pulse Formation

Speaker to be announced

Summary not available at press time.



MA2-1 / 3

Physical Origin of the Self-Mode-Locking Regime in Solid-State Lasers

Michel Pich6
Ddpartement de Physique (COPL), Universite Laval

Qudbec, Canada, GIK 7P4
Tel.: (418) 656-2753

FAX: (418) 656-2623

Frangois Salin
Institut d'Optique, CNRS URA14, B.P. 147,

91403 Orsay Cedex, France

During the last two years, it has been found that many solid-state lasers can naturally
emit trains of ultrashort laser pulses. This regime of emission, called self-mode-locking, does
not require the use of any passive or active modulation element such as loss or phase
modulators, saturable absorbers or nonlinear coupled cavities. Indeed, the first report by
Spence et al' indicated that self-mode-locking could be induced by misaligning the resonator.
Many similar observations2 ", combined with simple estimates of the nonlinear phase
retardation in the laser material, have indicated that nonlinear transverse effects (self-
focussing, self-bending) are playing a key role in the dynamics of pulse formation. In this
paper, we describe how the nonlinear lensing effect caused by self-focussing in the laser
material produces an effective nonlinear gain when an aperture is properly positioned or gain
saturation is taken in account.

The physical mechanism leading to self-mode-locking is the following. When an
intense short pulse is amplified in a solid-state gain, material, it experiences a phase
retardation due to the optical Kerr effect which varies spatially along with the laser beam
profile. This nonlinear lensing effect (self-focussing) changes the beam size and divergence
at every position in the laser resonator as a function of intensity. Such changes in the beam
parameters can be converted into an effective loss modulation using two methods: a) by
positioning a hard aperture in the resonator, such that an intense beam suffers lower
diffraction losses that a low power (CW) beam; b) by selecting a gain profile such that an
intense beam has a better extraction efficiency than a CW beam.

We have made numerical simulations of the evolution of the beam profile in typical
Z-type four-mirror laser resonators used for optically pumped solid-state lasers (the resonator
included two identical off-axis focussing mirrors and two flat end mirrors in an astigmatism
compensated geometry). Our parameters were selected to be appropriate for Ti:Sapphire
lasers, which are now used in many laboratories. Our calculations have taken into account
diffraction, self-focussing and gain saturation in an active medium pumped by a Gaussian
beam; the calculations were made for the tangential and sagittal planes. Two parameters were
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identified to evaluate the ability of self-focussing to lead to mode-locking: the change in
beam power as a function of nonlinearity (intensity); the residual gain per round-trip
experienced by a CW beam once an intense beam has reached steady-state.

Typical results obtained for resonators without any aperture are shown in Fig. 1 a and
lb. The output power increases with intensity (or nonlinear parameter K) up to a point
beyond which it drops rapidly. By adding the contributions along both axes, one can infer
a maximum power increase of 8%. Figure 1 also shows that the residual CW gain is negative
below a critical power, under such circumstances, the CW beam should be suppressed and
self-mode-locking should be stable. This behaviour was reproduced for a broad range of
parameters and was maintained as long as the size of the pump beam was below a certain
value.

The insertion of a hard aperture at one end of the laser resonator could create
conditions favourable to mode-locking (positive differential gain) only if the active (nonlinear)
material was displaced towards a focussing mirror, as shown in Fig. 2. This prediction was
also observed experimentally. One sees also that the discrimination against the CW
oscillations is much larger in presence of an aperture, indicating more stable conditions for
mode-locking.

A Gaussian beam model has also been developped and compared with the numerical
simulations. Although both models predict the same tendencies, their quantitative predictions
may differ, especially when diffraction by hard apertures is taken into account. For instance,
the beam size along counterpropagating directions may differ by 30%, as we have
experimentally reported in an earlier paper'. Other experimental results showing strong beam
modifications agree with our calculations.

References
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Figure 1. Output power (full curve) and CW residual gain (dashed curve) as a function of nonlinear
parameter K : a) sagittal plane; b) tangential plane. One end mirror has a 90% reflectivity; the two
focussing mirrors have a focal length of 7.5 cm and are separated by 16.4 cm. The distance from
the focussing mirrors to the end mirrors is 75 cm. The gain medium, of index of refraction n = 1.75,
is 1.5 cm long and pumped by a 30 pm waist Gaussian beam; the single pass power gain is 15% at
center at 7 = 0.80 pm.

5-
Figure 2. Differential gain per unit of nonli-
near phase-shift dg/do when the gain medium
is moved from center (D = 0) towards a focus-
sing mirror. Curve 1 is obtained without an V~ 0aperture, and curve 2 with an aperture. The N
resonator geometry is the same as in Fig. 1. A "M
hard aperture of 2.30 mm full width is placed
in the tangential direction. The differential
gain is the negative of the CW residual gain. -5
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Nonlinear Effects in a Ring Resonator
A. M. Dunlop, D. R. Heatley, and W. J. Firth

Department of Physics and Applied Physics
University of Strathclyde

107 Rottenrow, Glasgow G4 ONG
Scotland

Tel. (+) 44 41 552 4400 Ext. 3262
Fax. (+) 44 41 552 2891

There has been much recent interest in using a nonlinear lensing ele-
ment combined with an aperture to produce a saturable absorber for laser
modelocking.[1, 2] This Kerr-lens-modelocking (KLM) technique normally
uses the gain medium as the nonlinear element, but lasers with separate gain
and nonlinear elements have also been demonstrated,[3] allowing application
of this method to lasers in which the gain medium does not provide adequate
self-focusing or gain-guiding. The analysis we have carried out seems to indi-
cate that the nonlinear element need not be self-focusing; in fact, it appears
that a larger effect can be obtained by a self-defocusing element. Addi-
tionally, in the ring resonator geometry we consider, the intensity-dependent
lensing leads naturally to unidirectional propagation for continuous-wave las-
ing.

A suitable cavity (see fig. (la) consists of an identical pair of thin lenses
placed on opposite sides of the ring. Halfway between them on one side is
a Gaussian aperture (GA) with transmission e-? 2. We define a normalized
lens power to be the separation of the lenses divided by their focal length.
The modes of the cavity are found using the ABCD matrix formalism. If
lens power is exactly 4, then the beam will focus down through the GA
with minimal loss, and focus down again opposite the GA. In this case the
counterpropagating modes overlap exactly.

However, choosing a slightly higher lens power causes the beam to focus
down at different points for the different propagation directions. The beam
waist as it propagates around the cavity is shown in fig. (Ib). Ignoring the
imperfect mirror reflectivity and linear absorption, the only loss mechanism
is the clipping of the Gaussian field profile by the aperture, which in this case
has a spot size of 0.36mm.
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Figure 1: Parameters for linear ring resonator. (a) The Gaussian aperture is
characterized by the Fresnel number -yL/k (=5.0) and the normalized power
of the lenses L/f (=4.02), where 2L is the roundtrip distance and k is the
wavenumber. (b) The beam waist as a function of position in the cavity. The
solid line is for the mode propagating from left to right, the dashed line is for
the mode propagating from right to left. Both (a) and (b) share the same
horizontal axis.

Adding an intensity-dependent lens (Kerr lens) to the cavity will in gen-
eral change the loss. Since the nonlinear lensing effect depends on the spot
size of the beam as well as its intensity, the power of the nonlinear lens de-
pends on its position within the cavity. Thus the four positions denoted by
the arrows in fig. (1b) should yield the largest effects. Clearly the backward
and forward propagating beams will have different waists at these points,
leading to different changes in the loss due to the nonlinearity.

The relevant quantity from a KLM point of view is the change in loss
with respect to the change in the power of the Kerr lens. This quantity is
evaluated for a weak lense placed at an arbitrary position within the cavity,
for both a slightly "underfocused" cavity (lens power = 3.98) and slightly
"overfocused" cavity (lens power = 4.02), as shown in fig. (2). As expected,
for the overfocused case, a negative change in the focusing power of the Kerr
lens reduces the loss of the cavity. A surprising result is that the magnitude
of the curve for the self-defocusing case is roughly four times as large as for
the self-focusing case.
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Figure 2: Derivative of the loss with respect to the strength of the Kerr lens,
as a function of its position (same horizontal axis as in the previous figure).
The top curve is for a underfocused cavity, the bottom is for an overfocused
cavity.
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Dynamics of Nonlinearly Coupled Modelocked Laser Arrays

Song Wu, Sandra L. Smith, and Richard L. Fork
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We have used experiments and calculations to explore the dynamics
of two nonlinearly coupled modelocked lasers. A special feature of this
study is the presence of two distinct adjustable nonlinear mechanisms,
where one mechanism causes an attraction of the pulses in the two
separate lasers and the other causes a repulsion of the pulses. We find that
adjustment of the relative importance of these attractive and repulsive
mechanisms, as well as of the relative cavity length, provides a rich
variety of dynamical behavior that is not available in alternative laser
systems.

The mechanisms that produce this coupling are related to the
mechanisms that produce solitons within the modelocked laser. In the
operating regime where the shortest pulses are produced the pulses
themselves are technically solitons so that we can explore interaction of
solitons within the laser structure where the mediating mechanisms are
novel and distinct from those that cause interaction of solitons in
alternative media, such as optical fibers. The interaction of the pulses
themselves in the nonlinear medium is a multiwave mixing effect that
permits spatial redirection of the pulses. This furnishes a further
capability for influencing the pulse array in the coupled lasers that we
intend to, but have not yet, explored.

One motivation for this work is the creation of a capability for
producing and rapidly reconfiguring arrays of ultrashort pulses of
electromagnetic radiation. The presence of the adjustable attractive and
repulsive interactions combined with the capacity to make small
alterations in the resonator lengths allows us to obtain pulse
synchronization, pulse duration switching, a latching type of amplitude
bistability and, in some cases, phase locking of the carrier fields of the
pulses.

Stable operation in a given mode of operation can be achieved for
extended periods of time. The nonlinear mechanisms can be adjusted to
override to some extent the consequence of variations in resonator lengths
as a means of reducing the sensitivity of the system to unintentional
variations in resonator length. On the other hand the lasers can also be
adjusted to be sensitive to small externally introduced optical
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perturbations so as to provide a means for the laser system to serve as a
sensor of spatially and temporally distributed optical radiation. Similarly,
the state of the laser system can be quickly switched to an alternative
state by small deliberately introduced perturbations of the laser
parameters.

Desirable features of this system are sufficient complexity to explore
a variety of nonlinear optical dynamics, adjustable control, well defined
high reproducible laser behavior, and generation of arrays of optical pulses
that can be shorter than 100 femtoseconds. The capabilities are achieved
through the use of a common saturable absorber that produces an
attraction of the pulses via the shared bleaching of the absorber and a Kerr
lens deflection mechanism that produces, in effect, a repulsion of the
pulses in time.

While the initial system has been configured in dye laser media and
is limited to two lasers, calculations indicate that this strategy can be
extended to solid state lasers and to more complex arrays of modelocked
lasers. We are currently exploring these advances and may have additional
findings to report at the time of the meeting. The nonlinear interactions in
Ti:sapphire, e.g., are highly suitable to producing similar behavior in
Ti:sapphire lasers. The advantage of that system is the stability of the solid
state material and the large induced refractive index changes.

We are currently exploring means for enhancing the flexibility and
speed with which the ultrashort pulse array can be reconfigured by
introducing computer controlled phase delays within the laser resonator.
Novel electro-optic media, such as DAST, offer large electrically induced
phase shifts that can be used to provide adjustable control of the resonator
lengths in a computer controlled manner.

The properties of the initial system used to develop this technology
are described by Wu, Smith, and Fork in Optics Letters 17 , 276 (1992).
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Fast and slow self-phase modulation induced pulse shaping of
subpicosecond pulses in semiconductor laser amplifiers

A. Dienes, M. Y. Hong and J. P. Heritage
Department of Electrical and Computer Engineering

University of California
Davis, CA 95616 (916) 752-0583

Self- and cross-phase modulation (SPM, XPM) of picosecond pulses due to gain saturation
in semiconductor laser amplifiers has been investigated, both theoretically and experimentally. 1,2,3

Because of the large value of the so-called linewidth enhancement factor o:, these effects can result
in considerable nonlinear sweep and spectral broadening. The spectrally broadened pulses can be
partially compressed",2 by providing dispersion externally. It has also been shown3 that the
quadratic shape of the gain spectrum can result in considerable positive second-order phase
dispersion. For pulse durations of about 1 ps or shorter (and input energies in the 0.1-1 pJ range)
the fast n2 must also be considered. The gain saturation induced "slow" self phase modulation
(SSPM) is an integrating, energy dependent effect. On the other hand, the fast n2 responds to the
instantaneous intensity of the pulse, resulting in "fast" self phase modulation (FSPM). The
interplay of saturation, two kinds of SPM and dispersion will result in complicated pulse shaping.
In this paper, we investigate the evolution of subpicosecond pulses in semiconductor amplifiers
using a differential equation similar to one used for studying saturated dye laser amplifiers.4

Under certain conditions, soliton-like compression effects are predicted.
The nonlinear differential equation is

[aza,-2 1 [

Here, V is the complex amplitude of a pulse of power P, r is local time, 1P" the group velocity
dispersion, and b2 = n2 0oJcA with A the effective area and n2 the fast nonlinear index in cm 2/watt.
,yr') is the exponential gain governed by the equation

ag(m) - go-g(v) g(r)P(T) (2)
W

S

where Ws = AhJo/ofe is the saturation energy (ae is the emission cross section taken as constant
over the spectrum) and zr is the gain recovery time, the same here as the carrier decay time. For
pulses much shorter than r1, (2) has the solution g(r) = go exp[-W(T)/Ws] where W(r) =
f ".oP(t") dr'.

We note that the above equation results from a considerably simplified model of the very
complex effects that occur in semiconductor amplifiers in the subpicosecond domain. In particular,
since dispersion in large part results from the gain, 3 it in itself is subject to saturation.
Additionally, recent experiments 5' 6 have shown the existence of one or more fast lifetimes, on the
order of -500 fs, in the gain dynamics of such media. These fast lifetimes, attributed to relaxation
of dynamic heating effects, have been shown to lead to pulse width dependent gain saturation. 7

Their effect on SPM has not yet been studied. The origin and nature of the fast n2 has also not
been fully investigated. It is known that above the band-edge it is increasingly large and negative.
A value as high as -4x 10-12 watts/cm 2 has been measured in unpumped AlGaAs 8 and at least in
part attributed to the optical Stark effect, which is instantaneous. Recently, a moderately fast
negative n2 of even larger magnitude has been identified in InGaAsP lasers.9 This n2, of response



12 / MA5-2

time of around 0.5-1.0 ps, may be related to the dynamic heating relaxation observed in refs. 5, 6.
Thus, it is obvious that, for pulse durations in the -50 fs to -1 ps range, the above model is not
complete. Nevertheless, we feel that much can be learned from solutions of this equation
regarding the interplay of the various nonlinear effects and their relative importance for pulse
evolution. Additionally, it is possible that in the -0.5-2 ps pulse length range it can serve as a
reasonably realistic model. Importantly, we note that because n2 is negative and dispersion is
relatively large and positive, soliton-like shaping may take place.

The nonlinear equation given above can only be solved numerically. We used the split-step
Fourier method to arrive at solutions for the complex amplitude and spectrum. Due to the
complicated interplay of the various amplitude and phase shaping effects a large range of
parameters must be used. For lack of space, here we only summarize some of the more interesting
trends and present two specific results. As shown in Figure la, soliton-like pulse shortening is
calculated for typical energies of around a fraction of picojoule, input pulse widths of around 1 ps,
and linear gain of about 30 dB. Pulse compression by as much as 8 times was found. Figure lb
was calculated by setting a = 0. It illustrates the significant role that SSPM plays in producing a
large time shift and in reducing uncompressable energy. Another interesting observation is that for
a given set of semiconductor amplifier parameters the onset of compression is rather critically
dependent on the input pulse parameters. This is illustrated in Figure 2 which shows a 500 fs
pulse broadening, but a 1 ps pulse of the same 0.2 pJ energy compressing. This behavior is rather
unexpected. More easily understood is the gradual disappearance of the compression as the pulse
width is further increased (not shown). This latter trend is attributable to diminishing FSPM. The
SSPM, which does not depend on pulse width, cannot alone give compression. We also find that
as the input pulse energy is increased, the range of pulse widths over which compression occurs
increases. For around I pJ input energy, it readily occurs for a large range of pulse durations.

It is not easy to give a simple explanation of the results shown in Figure 2. We are dealing
here with dispersion, plus three nonlinear effects sensitive to pulse shape. These four interact in a
complex way to alter the pulse shape. In this complex interplay, once compression starts on the
major part of the pulse due to a "right" combination of chirp, it can continue to develop and even
intensify. However, the opposite effect can also happen.

In conclusion, using a simple model, we theoretically investigated ultrashort pulse evolution
in semiconductor laser amplifiers and found some interesting and unexpected trends in soliton-like
compression.
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Figure Captions

Figure 1. Output pulse shape for amplifier with common parameters Go = 30 dB, L = 300 pm,
Ws = 5 pJ, A = I g.m2 , y," = 18 ps 2/cm, n2 = -6 x 10-12 cm2/,v.

Figure 2. Output pulse shape for amplifier with the same parameters as in Fig. 1, and different
input pulses; dashed lines are the input pulses.
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OPTICAL PULSE EVOLUTION IN FIBRE LASER ADDITIVE PULSE MODELOCKING
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Introduction

The large optical gain bandwidth available in optical fibre amplifiers
holds the prospect of optical pulse production of the order of
100 fs . In the present paper it is wished to report on a theoretical
study of the utilisation of a fibre amplifier coupled to a nonlinear
fibre external cavity configured to permit interferometric additive
pulse modelocking (APM).

Model

The model developed in this work is of rather general application
and , for example , includes as a special case a description of
pulse effects in fibre laser amplifiers . The model utilises
numerical techniques for solving the nonlinear Schroedinger
equation appropriate to both the active gain medium of the fibre
laser and the passive external cavity nonlinear fibre [1]. Account
is taken of bandwidth limited cain in the fibre amplifier and
allowance is made for both the anomalous and the normal regimes
of dispersion in both fibres . Fine-tuning of the passive cavity
length to achieve APM is effected via a phase bias parameter
Coupling losses between the laser and external fibre cavities may
also be included in the simulation . Typical parameter values
appropriate to erbium-doped fibre amplifiers have been utilised.

Results

In Figure 1 , optical pulse compression as a function of the
number , n , of cavity round trips is shown . The final pulse
width is about 230 fs and is thus not limited bv the fibre gain
bandwidth . The critical role played by the phase bias in
achieving APM in this configuration is illustrated in Figure 2
Similarlv,the influence of fibre dispersion in determining
the dynamical evolution of the optical pulse is indicated in
Figure 3
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It is shown in this work that a variety of pulse phenomena may arise
in the all-fibre coupled cavity configuration depending upon the
operating conditions of the fibre laser. The anticipated pulse
narrowing is seen but pulse break-up may also occur. The presentation
will attempt to categorise these phenomena in accordance with
accessible practical control parameters of the device.
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Time inverted type-I intermittency of a single mode laser

D. Y. Tang and C. 0. Weiss

Physikalisch-Technische Bundesanstalt,
W-3300 Braunschweig, Germany

Among the three well-known routes to chaos in nonlinear
dissipative dynamical systems, onset of chaos via
intermittency has been extensively studied. Different types of
intermittency have been revealed experimentally /1-3/.
Recently intermittent transition to chaos through type-II and
type-III intermittency have also been observed in optical
systems /4,5/. To our knowledge, however, type-I intermittency
has not been observed in optical systems so far.

In this paper we report the experimental observation of type-I
intermittency on an optically pumped single mode laser. We
show that the observed dynamics is time inverted in comparison
with the usual description of type-I intermittency /6/.

The experimental setup used is an optically pumped single mode
NH3 FIR ring laser. It operates at the 81 Am wave length and
is pumped by a N2 0 laser. Single mode and unidirectional
operation of this laser was achieved by tuning the pump laser
frequency from the resonance. For the measurement the backward
emission of the laser was detected and the resonator detuning
was used as control parameter. Details of the experimental
setup see /7/.

A typical dynamics observed at the gas pressure of 35 Abar and
pump intensity of 3 W/cm2 is shown in Fig. 1. At larger
resonator detuning, the laser pulses periodically, as the
resonator detuning decreases to a critical point, this
periodic pulsing begins to be interrupted intermittently by
irregular pulses as shown in Fig. la, decreasing the
resonator detuning further, these interruptions become more
frequent and consequently the regular pulsing periods (laminar
phase) of the laser become short, as to be expected for an
intermittent route to chaos.

Th 4 s kind of intermittency exists only in a small range of
resonator detuning and the whole process described occurs at
resonator detuning larger than the one for which the period-
doubling route to chaos exists.

By analyzing the experimental data time-inverted, we find this
kind of dynamics can be good described by the theory of type-I
intermittency. First we have compared the first return map of
the observed dynamics to that predicted from the type-I
intermittency. Fig. 2 shows one of the typical results.
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Another characterization of type-I intermittency is by the
distribution of the laminar lengths. Different from the
laminar length distribution of type-II and type-III
intermittency, whose laminar length distribution is
exponentially falling towards long lengths, the laminar length
distribution of type-I intermittency
shows a maximum for long lengths. This difference permits even
without knowledge of the reinjection process to distinguish
between type-I intermittency and the other two types of
intermittency. We have calculated from the experimental data
this laminar length distribution. From Fig. 3 the maximum of
the distribution at pulse number 8 clearly identifies that it
belongs to type-I intermittency.

We have also calculated from the experimental data the scaling
law of the observed intermittency. A relation between the
average laminar length <N> and the control parameter g with

<N> C< -0. 6

was founded, which is close to the one as expected for type-I
intermittency /6/.
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Fig. 1. Time dependence of the laser emission as the resonator
detuning is changed. From (a) to (c) the resonator
detuning is decreased.
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Fig. 2. Return map In+l=f(In) constructed from the experimental
data.
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Fig. 3. Histogram of the laminar lengths calculated from the
intermittent state shown in Fig. 1c.
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SUMMARY: Dynamic behavior of the laser oscillation has been extensively

studied as a paradigm of nonlinear dynamics. Mechanism of laser instability

is strongly correlated with detailed relaxation and excitation dynamics in

the laser medium. Study of laser instability may open a way to precise

measurement of those elementary atomic and molecular processes.

A laser with a saturable absorber (LSA) shows passive Q-switching

(PQS) pulsations in the output. PQSS instabilities have been extensively

investigated in regular-band oscillations In CO2 and N2 0 lasers [1-5], and

found to be influenced by the relaxation processes of the laser levels [3].

In this paper, we report the first observation of periodic and

chaotic PQS instabilities in CO2 hot-band and sequence-band lasers which

oscillate among higher vibrational levels than that of the regular-band.

We propose a novel rate-equation model to comprehensively describe the

PQS instability in the regular, hot, and sequence bands. The three-

level:two-level model [3], successfully applied to the regular-band PQS, is

extended by introducing the vibration-to-vibration (V-V) resonant energy

transfer processes relating to the higher vibrational levels. The rate-

equation analysis on the model clarifies the effects of the V-V processes

on the temporal structure of the PQS dynamics.

Rate constants of the V-V processes Is determined from the analysis

of the PQS instability. Figure l(a) shows a periodic PQS pulse shape

observed on the hot-band transition between the (0111) and (1110)

vibrational states. Note that undamped relaxation oscillation appears in

the ending part of the pulse. On the other hand, in the regular-band
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oscillation, the relaxation oscillation is superposed on the entire part of

the quasi-cw tail, being similar to the pulse shape in Fig. l(b). Figures

l(b)-l(d) show the calculated PQS pulse shapes on the hot-band transition
as a function of the rate constant K1 of the V-V process:

C0 2 (011 1) + C0 2 (00 0 0) -- * C0 2 (00 0 1) + C0 2 (01 1 0).

This population transfer from the lower laser level causes the relaxation

oscillation on the pulse tall. When K1 is sufficiently large, the pulse

shape approaches those observed in the regular band [Fig. 1(b)]. The pulse

in Fig. 1(c) agrees well with the experimentally observed pulse. At

considerably small K1 , additional relaxation oscillation occurs Just after

the first peak [see Fig. 1(d)]. The phase portraits In Figs. 2(a) and 2(b)

clearly show the difference In the PQS dynamics between the cases of Figs.

l(b) and l(d). The trajectory visits two saddle focuses associated with the

relaxation oscillations when K1 is relatively small. On the other hand,

there exists only one saddle focus at larger K1 . The rate constant K1 is

(a) OBSERVATION (c) CALCULATION

S1000 0 1000

r (b) CALCULATION (d) CALCULATION

0-I.

01000 0 1000

Fig. 1 (a) PQS pulse shape observed in the CO2 hot-band oscillation with a
CC1 2F 2 absorber. (b)-(d) PQS pulse shapes In the hot-band oscillation

calculated as a function of K1; (b) K1 = 3.6 MHz/Torr, (c) K1 = 0.65

MHz/Torr, and (d) K1 = 0.092 MHz/Torr.
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(a) (b)

POPULATION INvE•ON (ARB.UNrIS)

Fig. 2 Portraits of the trajectory calculated in the phase space for the

population inversion and the laser intensity. The trajectories in (a) and

(b) respectively correspond to the periodic PQS pulsations of Figs. l(d) and

1(b).

accurately determined from the one-to-one correspondences between

experiment and theory. In the sequence-band oscillation between the (0002)
and (1001) states, the rate constant of V-V process concerning the pumping

of the upper laser level is also estimated through the analysis of PQS

pulsation.

The Lorenz plot of the hot- and sequence-band chaos are both one-

dimensional unimodal curves as well as in the case of the regular-band

chaos. This implies that the strange attractor of the chaotic pulsation In

any band has a simple geometrical structure. However, detailed analysis

reveals that the curvature of the Lorenz plot in the sequence band is

appreciably different from those of the regular and the hot bands. This is

reproduced quantitatively through the numerical calculation using the

proposed model. The V-V energy exchange in the Y 3 mode is found to

critically distort the strange attractor. The present analysis suggests

even chaos can be used as a method to study molecular processes.
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We present new results on the dynamics of solid-state lasers with a few number of

modes. Organized collective behavior has been observed in various nonlinear optical

systems, suggesting some generic behavior of periodic solutions in multimode lasers

[R - 5]. For instance, antiphase modulation of an N-mode laser is a self-organized

collective behavior in which each mode is characterized by N relaxation frequencies

oI< c2 < W3 ""< (N . while the total frequency oscillates only at w . We have

obtained analytic expressions for these frequencies in the N-mode case and we have

determined the domain of parameters in which antiphase modulation occurs. In the case

of a two-mode laser and near the lasing threshold for the second mode, the two

frequencies verify the scaling laws:

W -K w2

L TT R TT
c 1 ci1

where T = I/ic is the photon life-time (assumed to be identical for the two modes),
c

T, = 1/7 If the population inversion life-time, w the dimensionless pump parameter

scaled to the laser first threshold and w is the scaled threshold of oscillation of2
the second mode. Since w 2> 1, we also have w < i . These scalings have been

versed2 e R

verified experimentally using an optical fibre laser and a solid-state laser. The
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physical origin of these antiphase domains can be traced back to the occurrence of

cross-saturation. In a Fabry-Perot configuration with standing waves, the cross-

saturation coefficients are pump-dependent corresponding to the fact that the spatial

hole depth varies with pumping.

Another way to approach the dynamics of the two-mode laser is by considering its

response to periodic modulation of the gain parameter w = w0 [1 + m cos(w t)1. In the

case of deep modulation (i.e., when the modulation brings the laser below the first

threshold during part of a cycle), a rich bifurcation diagram has been found when the

external frequency is in the vicinity of either w L or iR. In particular, when the

external frequency is in the vicinity of w R, there is a coexistence between a

Feigenbaum sequence (with its associated chaotic domain) and a stable limit cycle

associated with the low frequency resonance t.
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Multimode solid-state lasers display deterministic chaos in individual mode

intensities (total intensity nearly constant) at free-running generation, and

in total output power at intracavity second harmonic generation (ISHG).

("green problem")1 . The goal of our investigation is comprehensive study for

both these cases of lasing.

The equations that govern the dynamics of the multimode lasing were

received in semiclassical approach in the frame of third-order theory for

homogeneously-broadened-line solid-state lasers (as for class B lasers in

general) with spatial hole burning, combination mode coupling

(CMC) (four-wave mixing) and nonlinear conversion into second harmonic (SH).

We assume that multimode radiation spectrum is quasiequidistant sequence of

frequencies, i.e. nonequidistant mode structure is possible. The possible

reasons of the frequency nonequidistancy may be as following: (1) Frequency

dispersion of active medium and other intracavity elements. (2) Mode pulling

due to frequency selection by intracavity elements. Such selection may be

caused for example by: (a) intracavity reflections or scattering (the effect

of complex cavity or weak etalon); (b) polarization selector like Lio filter

(due to birefringence and polarizer inside a cavity).

Numerical simulation of this model showed that the frequency

nonequidistancy of axial-mode spectrum leads to saddle-node (or subcritical

Hopf) bifurcation and limit cycle formation with periodical oscillations of

individual modes. One can note two features of these periodical oscillations:

(1) their spectrum range lays in a region from 10 to 1000 Hz (out of

relaxation oscillation frequency region); (2) oscillations have an antiphase

characters. The total intensity remains nearly constant. This feature is very

important for dynamics analysis in the case of greater number of modes because

of the possibility of multistability of solutions called "crowding attractors"

situation3 . Such situation produces special sensitivity of a laser to external
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noise sources. So, the chaotic behavior set a dominant due to crowding

attractors when the number of lasing modes arises. We have observed the chaos,

"metastable" chaotic behavior and a hysteretic phenomena both in the numerical

simulation and experiments.

Dynamics of the multimode ISHG have been studied in the frame of similar

model. The intracavity SHG is taken into account by the terms that describe

additional nonlinear losses. Frequencies that form SH radiation spectrum are

the result of summing and doubling of fundamental radiation frequencies. If

this spectrum contains N equidistant located frequencies then corresponding SH

spectrum will contain 2N-i frequencies. Quasiequidistant mode sequence of

fundamental radiation leads to more complicated set of frequencies in SH

range. The total number of spectral components in SH radiation in this case is

defined not only by the number of modes but also by the structure of the

fundamental laser spectrum. It was shown in the balance treatment of "green

problem" that the result of nonlinear conversion mechanism is a breaking of

steady-states stability through supercritical Hopf bifurcation and arising of

pulsation near relaxation oscillation frequency2.

As it was mentioned above (for free-running generation) mode-spectrum

nonequidistancy leads to saddle-node bifurcation. However, for intracavity SHG

the combination of two types of coupling takes place: CMC and mode-mode

interaction due to SHG. This provides the situation for which bifurcation

point arises not as a result of saddle and sink, but as a result of saddle and

focus coalescence. New bifurcation point can be of different types:

saddle-focus (at which homoclinic orbit makes tangency - Shil'nikov chaos) or

a pure imaginary pair and a simple zero eigenvalue, for example. The dynamics

phenomena in cases of points mentioned above has been studied in details. Let

us turn to the case of a pure imaginary pair and a simple zero eigenvalue. As

it was shown in Ref.4 the possible result of similar situation is a doubly

periodic flow on the torus which contains one "fast" frequency (relaxation

oscillation frequency in our case) and a slow frequency associated with the

secondary Hopf bifurcation. Consequently we can expect to see a rapid

oscillation with a slow modulation as well as transverse homoclinic orbits and

horseshoes (before homoclinic chaos torus must break-up). Our numerical

simulations showed that the treatment model contains rapid processes (due to
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intracavity SHG) as well as slow ones. We have demonstrated by consecutive

unifying of two types of coupling that solution quasiperiodicity breaks up

with strange attractor formation. In the analysis of the process of torus

destruction we note intermittency of a second-type (caused by irregularity of

trajectory passing near saddle-focus). The interaction between Hopf and

homoclinic bifurcations is displayed here as combination of spiral type

mapping (this is a feature of second-type intermittence) and homoclinic

reinjection to neighborhood of the unstable saddle-frcus; (spiral center). We

have analyzed a power spectrum of mapping and determined that it can be

approximate with function 1/f07 near origin. When frequency nonequidistancy

increases, the laminar times vanish and dynamics becomes a pure chaotic.

For greater number of modes one can expect that orbits can visit the

vicinity of several unstable fixed points so, more rich dynamics may exist

Complexity of dynamics is also possible when the resonance situation takes

place for points like a simple zero and a two pure imaginary pairs. Actually,

this case can be realized in solid-state lasers due to the existence of

low-order resonance near the half of the relaxation oscillation frequency. The

origin of such a resonance is a result of multi-mode operation under the

condition of spatial hole burning.
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As observed in detuned lasers [1, 2] the arbitrary constant phase of the laser field in the CW
region starts to drift linearly besides pulsations in the self-pulsing region. The fact that this drift
might have similarities with the Berry phase [3] was pointed out in [2, 4] and a comparative
study was given by us [2]. It has been not easy to establish an exact mathematical relation
between the two, however. Thus a compelling analogy is still lacking. The main obstacle is that
the original formulation [3] of the Berry phase was given for linear Schr~dinger systems, whereas
we have here an essentially non-linear and dissipative system. Fortunately we have succeeded in
borrowing the geometrical formulation of the Berry phase for linear systems [5] and essentially
generalizing it to a certain kind of nonlinear dissipative systems, to which detuned one- and
two-photon lasers belong. An exact analogy is therefore established. We show that the whole
phase accumulation of the laser field in a period of the intensity pulsation consists of two parts:
a dynamical part given directly by the equation of movement and a geometrical part given by
the path-integral along the trajectory of limit cycles in a certain phase space. This later part
has the same origin as that due to parallel transportations of vectors in a curved space.

Consider a dynamical systems described by the following ordinary differential equations:

I ,) = IZ (IT))), (1)

where I T) = (01,02,.-¢,0) is a vector describing the states of the system in phase space and

I.T (I %P)) is a nonlinear vector-valued function of jI o). In general I (IP))) is also a function of
the externally controllable parameters, e.g., the pumping in lasers.

We define now a diagonal matrix, T (O(t)), whose elements are given by exp(ias0(t)), exp(ia20(t)),
... exp(iOnO(t). The ai's are real numbers and 0(t) is a real function. Suppose that for certain
sets of parameters there exists a kind of asymptotically stable solutions of eq. (1), such that,
for certain initial conditions and for t -- oo, the following relation holds:

JT(t + T)) = T (-60) II(t)) , (2)

where 64 is a real quantity. We can show [6] that for such systems the whole phase accumulation
is given by:

60 AudX1 + Wd(r)dr, (3)

where AM is the so-called vector potential and given by

Aý' = IM -N ' (4)

and wd is the so-called dynamical frequency and defined by

Wd(t) = -Im { ( 'T AY ))} (5)1(T JAI T) "(5
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The new periodic vector is defined as

I$(t))= T (ý(t) + f •d(t')dt') IT). (6)

The ¢(t) satisfies

q(t + T) - 0(t) = 6 - wdddr. (7)

A is a diagonal matrix with ai as its elements.

For one-photon detuned lasers we use the notations in [7], the equations are then given by:

X = -kX + WY, (8)

Y" = -aY + (r- Z)X, (9)

Z = -bZ + I-(X*Y + XY*), (10)
2

where r = r + ir 2 , a = 1 + ir 2 , r, is related to the pumping. r 2 = (1 - k)A and A is the
detuning between the cavity and the atomic frequencies. b and k are the relaxation constants of
the cavity and of the population inversion scaled by the relaxation constant of the polarization,
respectively . The reference frequency is the CW-frequency so that any new frequency will be
due to the pulsations of the intensity. Here I1%) is a vector with three components (X, Y, Z) and
the ai's are given by (a, = 1,a2 = 1,a 3 = 0). From our earlier analysis [2, 7] we know that this
vector is cyclic after the second threshold, when the intensity shows periodic pulsations. Using
formula (5) the dynamical frequency is given by

-r 2 JYI 2 + Im[(r - Z - k)XY*]
Wd : - IX12 + 1y12 (11)

From this expression we see Wd = 0, if there is no detuning, because Y is then asymptotically

real and r 2 = 0. We know that there is no phase accumulation for perfectly tuned lasers in
the domain of pulsation except for that induced by the CW-frequency. Therefore there is no
geometrical phase for the perfectly tuned lasers. In the presence of detuning the whole phase is
given by [7]

t Im [Y exp(io)]

0(t) = -k dr[, (12)

where x 1 = X exp(iO) is a real variable. The dynamical phase is given by the integration of
(11). The subtraction of the dynamical part from the total phase gives the geometrical phase.

Our second example is the detuned two-photon laser. Denoting the electric field amplitude by
E, the polarization of the medium by P, and the inversion by D we can write the equations as

[8]:

E = (id- l)kE - 2iPE*, (13)

P = -(id + 1)P + iDE 2 , (14)

b = b(Do - D) + 2i [PE 2 - P*E 2
, (15)
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where d is the scaled detuning parameter between the cavity and atomic frequencies and Do
denotes the pumping rate. k and r have the same meaning as in the one-photon laser. Again
we take the CW-frequency as the reference frequency. It can be easily verified that the ai's are
now given by (a1 = 1, a 2 = 2, a 3 = 0). The Hopf bifurcation of this set of equations was studied
in [8] and there exists a threshold for self-pulsing of the intensity. The cyclicity of E and P as
defined in (2) can be easily verified in the parameter region of the periodic intensity pulsations.
The dynamical frequency can be calculated from Eq. (5)

d [kIEI2 - IpI2] + Im {iDE 2P* - 2iPE 2}(
Wd = -E1 2 + 21p12 (16)

Again we see Wd = 0 if d = 0, because the polarization is asymptotically imaginary in this case
and the second term in the numerator then vanishes. The geometrical phase is therefore zero
in this case as well. In the case of detuning we can calculate the geometrical phase in a way
similar to that in the one-photon laser. The total phase is now given by [8]:

t
= dr [2Re {P exp(2i)} - kd]. (17)

The relation between the total, geometrical and dynamical phases can again be determined as
above.

In surmnary we have shown that the geometrical formalism for the parallel transportations
of vectors and the geometrical phase expressed as a line integral (3) formulated hitherto for
Hamiltonian systems or linear non-Hamiltonian systems can be suitably adapted to dissipative
systems showing cyclic attractors. The concept of the geometrical amplitude accumulation can
be naturally and generally introduced for nonlinear dissipative systems as well. Finally our work
shows that the phase accumulation in self-pulsing lasers is indeed related to the geometrical phase
or Berry' phase.

References

[1] M.F.H.Tarroja, N.B.Abraham, D.K.Bandy and L.M.Narducci, Phys. Rev. 34A,
3148(1986);H.Zeglache, P.Mandel, N.B.Abraham, and C.O.Weiss, Phys. Rev. 38A,
3128(1988)

[2] C.Z.Ning and H.Haken, Z.Phys. B, 81, 457(1990); C.Z.Ning and H.Haken, Phys.Rev.A, 43,
6410(1991)

[3] M.V.Berry, Proe.Roy.Soc.,A 392,45(1984)

[4] R.Vilaseca, G.J.de Valcarcel and E.Roldan, Phy.Rev., A 41, 5269(1990)

[5] B.Simon, Phys.Rev.Lett., 51,2167(1983); Y.Aharonov and J.Anandan, Phys.Rev.Lett., 58,
1593(1987); J.Samuel and R.Bhandari, Phys.Rev.Lett., 60, 2339(1987)

[6] C.Z.Ning, Dissertation, (Universitiit Stuttgart, 1991)

[7] C.Z.Ning and H.Haken, Phys.Rev.A, 41, 3826(1990)

[8] C.Z.Ning Z.Phys., B 71, 247(1988)



32 /MB6-1

Dynamics of Monovelocity Atomic Beam Maser
A.N. Oraevsky, T.V. Sarkissian,

D.J. Jones, D.K. Bandy
P. N. Lebedev Physics Institute, Russian Federation

Physics Department, Oklahoma State University, Stillwater, OK 74078

The dynamics of a beam maser, the first device in quantum
electronics, was the subject of attention more than thirty years
ago [1-4]. However, the interest in a beam masers has increased
recently due to their applications in the study of fine quantum
effects of atom interaction with the cavity field[ 5' 6 ] . One of
the most important feature of the presently used maser is a
monovelocity atomic beam. A theory of a monovelocity beam maser
was developed by Filipowicz et al.[7] and Guzman et al!8].
The authors of those theoretical papers analyzed a micromaser,
i.e. the maser with a smaLI number of atoms in a resonator. The
uantum effects are dominating in that case. That is why in
7,8] the statistical but not dynamical approach to the problem

has been used.
Our task is to investigate laser dynamics with a Large

number of atoms in the resonator when the quantum effects are
negligible but the coherent effects become dominating. In this
case, as is known, the polarization of an active medium plays a
very important role and the dynamic chaos is possible (see, for
example, [4,9] and elsewhere).

Unlike the Maxwell-Bloch model we assume an atomic beam to
be a mono-velocity non-selfrelaxing quantum system. The
parameter, which determines relaxation properties of the system,
is the finite time of atomic interaction with the resonator
field. As we shell see, this modifies radically the maser
(laser) dynamics, as compared to a laser described within the
framework of the Maxwell-Bloch model.

We consider a single-mode microwave maser with a uniform
field along the z-axis of the cavity. We assume the
eigenfrequency of the cavity wC is resonant with the
eigenfrequency w of atomic transition. The equations of motion
in the slowly varying amplitude approximation for the
electromagnetic field E, polarization P, and population
inversion N are



MB6-2 / 33

+ x) G = T)a Xdf , Cla)
F 0

a+ a.) X GY, Cib)

+ 0 -GXC 1c)
where
T = -- , t = Z , X YToP G E To" p (2)

L is the cavity length and x represents the cavity losses, v is
the velocity of the atoms in the beam, 2y=wc/Q where Q is the
quality factor of the cavity, M is the dipole moment of the
atomic transition, N =(I/v)CLS/V) where I is the atomic beam0

intensity in atoms/cuff s, V is the cavity volume, and S is the

beam cross section. The excitation parameter, rW = . -LN0 T0 .
We consider that all the atoms are in the upper state and

there is no polarization at the cavity entrance; i.e.
YCT,O) = 1 ; XCT,O) = 0 . C3)

The steady-state branches of G as a function of q are
presented in Fig.1. The branches with negative slope (dashed
curve) are unstable. The stability of the positive slope
branches depend on the 7? and a parameters and can be studied by
the linear stability analysis. Figure 1 shows the stability for
each branch (BI,BII,...) on the steady-state curve for x=0.4
where the stable ranges are indicated by the bolded solid line.

Figure 2 shows the field behaviour in a forward and backward
ramp (indicated by arrows) of the parameter 7 for x=0.4 . During
the forward scan in the first branch (BI), the system follows
the steady-state curve and becomes unstable.For increasing
excitation the system continues to oscillate until it jumps to a
stable region of the second branch (BII) .The system resides on
this branch stably over a small range of the excitation when it
again becomes unstable and begins to pulsate. This region of
oscillation persists until the system jumps to the fourth branch
CBIV), over-shooting the third branch (BIMl), and entering an
unstable region of the fourth branch.

The reverse ramp as indicated in Fig.2 shows that the
oscillations of the fourth branch persist well beyond the
transition point of the forward scan until it reaches the
branch's stable region, following the steady-state trajectory.
It finally drops to the third br&nah, stahly rosiding on tho
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third branch, dropping to the second branch and so on. As seen
in Fig.2 hysteresis between unstable regions, multistability is
possible in the monovelocity atomic beam system.

In general, the parameter space in this system is rich in
nonlinear phenomena. There exist: multistability and hysteresis;
irregular oscillations for both high and small values of the
cavity loss parameter; the dynamical transitions between
different steady-state branches.
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Figure Captions

1. Steady state and linear stability Cx=0.4) of the monovelocity

atomic beam maser; Go as a function of 77.

2. Dynamical behavior of the system in a forward and backward

excitation ramp for x=0.4.
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Interaction of Relaxation Oscillations and Instability
in a Bidirectional Nd:YAG Laser with a Nonreciprocal Ring Cavity

P. A. Khandokhin, Ya. I. Khanin
Nizhny Novgorod
Russian Federation

It is shown that the phase nonreciprocity influences the stability of the traveling wave
regime due to changing the interaction between different types of relaxation oscillation.
The laser sensitivity to the sign of phase nonreciprocity appears with detuning.
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1. Introduction

The generation of femtosecond optical pulses using the feedback from an external nonlinear cavity is now
a well established technique. The principle consists of interfering a reference pulse with a chirped version
of itself, where the chirping is due to self-phase modulation (SPM) in a Kerr-like material. By adjusting
the relative phase between the pulses, it is possible to achieve pulse shortening at each round-trip and
positive differential gain for the short pulse.

Many interferometric configurations have been proposed, where pulse chirping and pulse amplification take
place in different materials [1-4I. This paper addresses the problem of establishing the performance and
the stability of configurations where both the amplification and the Kerr nonlinearity originate from the
same medium, as discussed in Ref. 4. In particular, we look for stable conditions leading to minimum pulse
duration and minimum time-bandwidth products.

2. Modelling

The four types of configurations shown in Fig. I will be examined. A spectral filter F(w) is taken either
as a complex lorentzian or as a gaussian. The active material is characterized by its gain G(o), its nonlinear
index of refraction n2 and its dispersion D2. The first scheme involves a two beam-interference effect while
the other three involve multiple-beam interference effects which are known to be intrinsically unstable at
high intensities. These schemes should be applicable to Ti:Sapphire lasers, fiber lasers and semiconductor
lasers. In our modelling, a pulse shape is sent iteratively through the different parts of the laser. The
combined effect of amplification, SPM and dispersion of the active medium is treated by the split-step
Fourier method which breaks the medium into alternate slices of nonlinear amplifier and dispersive
material.

3. Results

Typical results obtained for the nonlinear Michelson configuration (Fig. I a) are described herein. We have
chosen this configuration because it is the one likely to be more stable; in fact, the only potential
instabilities are due to the laser dynamics, and not to a nonlinear interferometric reflection. In our
simulations, we used a gaussian filter with a bandwith of 10 THz and a beam splitter reflectivity of 50%;
all other components are assumed nonlossy. To achieve pulse shortening, the phase mismatch between the
arms of the interferometer must be appropriately chosen. Convergence of the system parameters to a short
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a)

b) Fw ~ o..

C)HV

d)

Figure 1. Interferential configurations for nonlinear coupled cavity mode-locking; a) Michelson, b) Fox-
Smith, c) Modified Fox-Smith, d) Faby-Perot interferometers.
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pulse is obtained lor a phase mismatch ranging from -x to 0, where the interferometric reflectivity
increases with intensity. In fact, within this range (as shown in Fig. 2) stability is not garanteed. Periodic
oscillations associated to a Q-switching instability tend to narrow the stability zone and break it into two
parts at low pumping levels. This instability can be understood as follows: the steep slope of the nonlinear
reflectivity as a function of intensity leads to large pulse intensities and energies which must be matched
by adequate pumping rates; otherwise, the gain medium is rapidly depleted, resulting in a drop of pulse
power and energy. The maximum slope of the interferometer response occurs at a phase mismatch of -t/2,
where a loss of stability is predicted.

With a nondispersive gain medium, the pulse width ranges from 70 fs to 170 fs with a time-bandwidth
product almost constant at arount 0.59, giving insight on the large phase content of the pulses. With
negative dispersion included into the gain medium, shortening of the pulse is obtained. For a phase
mismatch of -n/2 and a dispersion of -800 fs2, a minimal pulse width of 70 fs is reached with a time-
bandwidth product of 0.42. In general, the time-bandwidth product slightly decreases with an increase of
negative dispersion.

3.5

4 3.0

0
04 2.5

U) 2.0

S 1.5

0
Z 1.0

-7r -37T/4 -7T/2 -7T/4 0

Phase Mismatch (Rad)

Figure 2. Regions of convergence to a short pulse (solid line), for normalized pumping of 1.5, 2. 2.5, 3.
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Numerical simulations of the mode-locking dynamics of synchronously pumped KCI:TI°( 1)
and LiF:F2+ colour-centre lasers [1,2] in Fabry-Perot and ring geometries are presented.
The response of each laser to variation of cavity mismatch is discussed and in partic-
ular, their pulse-shaping properties and the conditions required for pulse optimisation
and stabilisation. Each of the cavity tuning curves consists of a narrow region of quasi-
stationary pulsation, bounded by regions in which the presence of spontaneous emission
noise generates episodic phase-wave perturbations, leading to a fundamental pulse jitter
[3]. The resulting pulse characteristics are independent of whether the lasers are con-
figured in Fabry-Perot or unidirectional ring geometries, but the detailed pulse shapes
and the stability boundaries of the two lasing species differ slightly. Thus, whereas it is
possible to minimise the phase-wave fluctuations at the peak of the T10 (1) tuning curve
to generate optimised, quasi-stationary pulses, in F+ a slight detuning from optimum is
required, albeit by only approximately 15%. The equivalent bidirectional ring lasers ex-
hibit regions of quasi-stationary, spontaneously unidirectional lasing, bounded by regions
of competitive, bidirectional switching. The physical mechanism governing bidirectional
switching is the same as that driving pulse jitter in the Fabry-Perot and unidirectional
ring configurations, namely, the passage of spontaneous noise induced phase-waves [4].
Consequently, there is a simple correspondence between the two operating regimes of the
bidirectional ring lasers and the quasi-stationary and fluctuating regimes of the other laser
geometries.

To illustrate the bidirectional switching action, Fig. 1 shows the intensity and phase
profiles of the forward and backward-going pulses during a typical switching period. With
each cavity round-trip the phase-wave initially ahead of the forward-going pulse (Fig. I a)
sweeps slowly back through it. As it does so, the energy extracted by the forward-going
pulse from the inverted medium is diminished, allowing the backward-going pulse to grow
from the residual gain. Once passage of the forward-going phase-wave is complete, during
which time it is severely attenuated, almost all the available energy has been switched
to the backward-going direction. In this particular case, the subsequent passage of the
phase-wave just ahead of the backward-going pulse at the end of this sequence (Fig. If)
switches the lasing direction once again.

Pulse jitter in mnode-locking by synchronous pumping has long been recognised as a
macroscopic manifestation of quantum noise [3]. A significant problem in the experi-
mental realisation of this phenomenon is the capture of sufficient data describing these
ultrashort pulses. The bidirectional switching described above provides a distinct and
clear macroscopic signature of quantum fluctuations which could be readily measurable.
A more subtle macroscopic switching action of the same origin in the Fabry-Perot geom-
etry will also be described.
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Figure 1 Forward-going (a,c,e) and backward-going (b.d,f) pulse intensity and phase
profiles for the F+ bidirectional ring laser during a phase-wave driven switch in pulsing
direction. The time interval between each pair of pictures ((a,b), (c,d) and (e,f)) is 80
cavity round-trips.
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I)elay-induced complex dynamics in lasers have been investigated in various schemes, such as rich

phenomena in semiconductor lasers with external feedback,' and quasiperiodicity in (C02 lasers with

electro-optic feedback. 2 Recently, we proposed high-speed picosecond pulse generation in semicon-

ductor lasers with incoherent delayed feedback.-" The basic idea was derived from successive carrier

modulation by delayed feedback light whose polarization direction is rotated to be orthogonal to the

lasing light. Such a feedback scheme is referred to as incoherent feedback.4 We showed theoretically

that periodic spiking oscillations can be excited in a short-delay regime, i. e., delay time < carrier

lifetime. In this paper, we extend this scheme to general class-B lasers and investigate dynamics in

wide parameter regions.

The basic single-mode laser rate equations for population inversion density n, and photon

density s are expressed as

(Ih)(t)/(lft = a - n(t)[l + s(t) + ys(t - T)], (l)

ds(t)/dt K[(,,(t) - 1)s(t) + cn(t)]. (2)

Here, i' is relative l1ip) power scaled by threshold, time t and delay time T are scaled by

pop)ulation lifetime r, K = r/rp ( 7-p is the p)hoton lifetime), y is the effective coupling coefficient.

and E is the spontaneous emission coefficient.

Figure I is a stability diagram based on a small signal linear stability analysis of Eqs. (1)

and (2). Multiple unstable regions exist. In the unstable regions, the stationary solutions become

dynamically unstable and regular and irregular sustained relaxation oscill(tions may appear when

intitial values are set near the stationary state, i. e., n, = s/(s+ ) and s 2 (?w- ])/(] + Y)+t+w/( w-

i),(( << 1). In addition to this instability born from destabilized statinary states via supercritical



46 / MC5-2

llopf bifurcation, large signal regenerative spiking oscillations,"5 which cannot be predicted by linear

stability analysis, are found to be excited by setting initial conditions to be outside the vicinity of

the stationary state. It short, these two motions coexist at fixed parameter values in the phase space

with different basins of attraction. The spiking oscillation corresponds to a repetitive generation

of the spike in the onset of relaxation oscillation which builds up from a nonlasing solution, i. e.,

io "i w, anld( so - cw/( I - iv), (( << I).-` Such a spiking oscillation has been observed in deeply

modulated class-B lasers in which the pump power drops below the threshold during part of the

cycle." It is interesting to note that in the l)resent system the spiking oscillation is excited by

a delay-induced pulselike modulation of population inversion. Examples of these two motions are

sihown in Fig. 2. In the case of spiking oscillations (Fig. 2(b)), the delayed feedback photon indicated

by I in the figure, which originates front the spike indicated by 4, depletes the population inversion

in a stepwise mannper and controls the buildup process of the next spike. This regenerative spike

generation process can be understood in terms of particle motions with a kicked perturbation in

an asymmetric Toda-like potential.'

From numerical simulations of Eqs. (1 ) and (2), these two motions are found to be destabilized

when the control parameters, w, T and y, are changed. Each attractor undergoes a complicated

bifurcation leading to chaos interrupted by fractional locking. Two qualitatively different oscillation

patterns born front different periodic states are shown in Fig. 3. The physical interpretation of

such instabilities resulting front a 'history-dependent' perturbation and the interplay between two

attractors, such as chaotic itinerancy in large i, and T regimes, are now under investigations.

(Mutual locking phenoniena between tlhese two motions have been demonstrated numerically in a

laser array in which emitters are globally coupled through incoherent (lelayed feedback. 7 )

Referentces
1. For review, see K. Otsu ka., SPII E Non lin cr Optics ,indI Alaucrius. 1497, 432 (1991).
2. F. T. Arecchi. ct atl., Phys. Rev. A 43, .1997 (1991).
3. K. Otsu ka and .J.-L. ('herm, Opt. Lett. 16, 1759 (199 1).
•4. hI. Yasaka and II. Kawaguchi, Appl. lPhys. Lett. 53, 1360 (1988).
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Adiabatic elimination is a standard procedure applied to the Maxwell-Bloch laser equa-
tions when one variable or more is slaved to the remaining variables. An important case in
point is a laser with an extremely large gain bandwidth satisfying the condition "Y± > -ill, k
where -Ly is the polarization dephasing rate, -'11 the de-energizat ion rate and k the cavity
damping constant. For example, color center gain media satisfy this criterion and support
hundreds of thousands of longitudinal modes in synchronous pumped mode-locking oper-
ation. For simple single mode plane wave models the crude adiabatic elimination step of
setting the derivative of the polarization variable to zero can be avoided by using center
manifold techniques [1]. In this general class of singular perturbation problem, the idea is
to coordinatize the problem using linear stability analysis about some known solution and
then to construct an approximation to the center manifold on which the (possibly dynamic)
solution remains for all time. This procedure has been successfully applied to the Maxwell-
Bloch equations describing a single mode homogenously broadened ring laser [2]. Extension
of the procedure to nonlinear partial differential equations is very difficult in general as the
resulting center manifold may be an infinite dimensional object. When transverse (or ad-
ditional longitudinal) degrees of freedom are introduced in the Maxwell-Bloch equations in
order to investigate spatial pattern formation (or mode-locking dynamics) we find that a
crude adiabatic elimination (henceforth referred to as standard adiabatic elimination SAE)
leads to nonphysical high transverse (or longitudinal) spatial wavenumber instabilities [3].
Recent attempts to apply the center manifold technique to the transverse problem have met
with mixed success [4]. In fact the high transverse wavenumber instability shows an even
stronger divergence than the SAE case for positive sign of the laser-atom detuning. More-
over, the analysis becomes unwieldy even in situations when the center manifold approach
appears to work.

We will report on a novel, yet simple approach to adiabatic elimination of the polarization
variable from Maxwell-Bloch equations describing transverse spatial patterni formation (and
longitudinal mode oscillation) in a homogeneously broadened ring laser.

OF OF .d 2 F
Odt- + vO = i .a H - K(F + CP)

-9 -(1 + ibAC)P - FL)
at

O D 0D {1 (FP* + F*P) + D) - I}-t -2 2
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where F, P and D are normalized field, polarization and inversion variables respectively.

"11I6 AC is the atom-cavity normalized detuning, the time t is scaled to the polarization de-
phasing time -ý--, v is the group velocity, Df a diffusion coeffcient and a a diffraction coeffi-
cient. The other parameters are K = al In RI/27r with a, = 2rc the longitudinal interniode
frequency spacing. These equations are supplemented by the periodicity boundary condit ions

F(z = o, x, t) = F(z = 1, x, t).

Standard adiabatic elimination of the polarization variable from the above set (Pt = 0)
will decouple the polarization variable from the field equation and introduce arbitrarily high
transverse or longitudinal wavenumber instabilites yielding nonphysical behavior. The idea
behind our approach is to use the linear dispersion relation

Wn,k = an + ak2

for the linear field operator in a rotating wave type of transformation on the Maxwell-
Bloch equations in Fourier space, then adiabatically eliminate each Fourier component of
the polarization variable before inverting the transform. The end result of this procedure is
the following adiabatically reduced set of "rate" equations

OF OF 02 F
_-+ v - za, -K (F + CP)
091 0Z X2

r)D ~9 2 D 1=Dor - -D -2 3_2(Fp*. + F*P) + D - 1}

where

P(z, x, t) = -U(z, x) D {F(z, x, t)D(z, x. t)}

where 0 denotes convolution and U(z,x) is the Fourier transformation of the function

1/[1 + i(6 AC - w(n, k))]. Formally, we have replaced the local operator P in the SAE by a
nonlocal operator P which provides a finite gain bandwidth for excitation of transverse and
longitudinal modes and a gain discrimination for different modes. In fact, we conjecture that
this nonlocal infinite dimensional quantity P defines a globally attracting inertial set, which
in the limit yt --+ oc, reduces exactly to an infinite dimensional global center manifold on
which all asymptotic solutions lie.

As an illustration of the robustness of our nonlocal adiabatic elimination technique
we have compared instability growth curves for transverse pattern formation aild zimulti-
longitudinal mode instabiities for the full model, NAE and SAE models. In order to show a
difference between the exact and NAE growth curves we are forced to take 3`± rat her small
relative to 3yll and it. We remark finally that the condition 1,± > It is all that is required with
no restriction (other than a physical one) placed on the magnitude of "yjI. In order to test
the robustness of the NAE equations (2) we integrated both sets of equation a wide range
of initial conditions and found excellent, agreement between the two models. By nionitoring
the nonlocal quantity P(z,x,t), using the exact, solution, we verified that lIhe asynmpt otic
solution (after time t > -y-1) remains within -I of the inertial set lefined bv P.
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Summary. Recently, instabilities and chaos in a single-mode CO2 laser with a
saturable absorber (LSA) have attracted much attention as a direct access
to nonlinear dynamics, such as Shil'nikov chaos and Feigenbaum's period-
doubling scenario [1,2]. Introduction of extra lasing modes may bring
novel aspects into the laser dynamics and largely extend applicability of

the LSA as a model of dynamical systems.
Recently, we have reported that spontaneous periodic mode switching

occurs in a bimode oscillation of a CO2 LSA [3]. Our laser oscillates on
two lines which are in axial (TEM0 0) and off-axial (TEM0 1) modes of the
Fabry-Perot cavity. Only the laser radiation in the axial mode is absorbed
by the saturable absorber. The two-mode instability is caused by the
combination of the passive Q-switching and the cross saturation between
the lasing modes. By considering the transverse spatial overlapping be-
tween the modes, we have modified the three-level:two-level model for the

single-mode LSA [2] to describe the multimode case. Types of the observed

dynamic mode competition have been reproduced with good fidelity by the
numerical analysis [3].

In this paper, we report novel aspects of instability and bistability of

the bimode CO 2 LSA on the basis of the modified version of the three-
level:two-level model.

The rate-equation analysis reveals that two types of chaotic bimode
pulsation are realized in totally different parameter regions, one of
which (type-I) is accompanied by the period-doubling bifurcations as in the

case of the single-mode chaos [2,3]. The other (type-II) has no clear stand-

ard scenario. Figs.l(a) and (b) show the Lorenz plots constructed from the
calculated time series of the axial-mode intensity for the cases of the
type-I and type-II chaos, respectively. While the Lorenz plot of the type-I
chaos consists of one-dimensional curves, that of the type-II chaos shows
two-dimensional distribution.
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Fig.1 Lorenz plot of the type-I [a] and type-II [b] bimode chaos

In the type-I chaos, the whole laser dynamics is dominated by the
temporal behavior of the axial mode and the saturable absorber, and so
identical to the single-mode chaos. On the other hand, both modes cooper-
atively drive the laser system and produce the type-II chaos.

The type-II chaos is observed for the first time in a CO2 laser with a
formic acid absorber (see Fig.2). Characteristic features of the Lorenz
plot, the fractal dimension, and the Kolmogorov entropy of the observed
chaotic pulsation agree quite well with the theoretical predictions.

Besides these Instabilities, the present bimode LSA exhibits optical
bistability with more complicated hysteresis loops than those generally
observed in a single-mode LSA [4] or a multimode laser in the case of
strong coupling [5]. Fig.3 shows an example of hysteresis curves calculat-
ed as a function of the discharge current. In a real CO2 laser, the exci-
tation efficiency has a peak as a function of the discharge current be-
cause of the dissociation of CO2 molecules. This effect is taken into
account In the present model. The solid and dashed curves respectively
represent stable and unstable stationary solutions of the rate equations.

AXIAL MODE 9Pm R(1I)

Fig.2 Observed chaotic
OFFFAXIAL MODE pm R() mode competition.

0 TIME in,.o
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Below the current of the point D(C'), there are two solutions (IckO,Is=O)
and (Ic=OIs*O) corresponding to exclusive cw-mode oscillation, where Ic and
is denote the axial- and off-axial mode intensities, respectively. Below the
current of A(A'), both solutions are unstable, and mode-switching instabili-
ties occur. In the current range above D(C'), another solution (Ic10 ,1 sY0 )
emerges, corresponding to simultaneous bimode oscillation. When the cur-
rent is increased from A(A') to E(D'), and then decreased back to A(A'), the
axial-mode Intensity traces the loop (A4B+C+D+E-*F4G*C.B-A), and the off-axial
mode goes along (A'•B'-C'.D'*E'.F'4B'.A').

It Is interesting to note that the laser system can be switched not
only to the state where one mode is on and the other off, but also to the
state where both modes are on. So this bistable element can store more
information than the ordinary bimode bistable laser [5]. This property may
be useful In photonics applications with semiconductor device.

Experiment to search the bistability is now In progress. Preliminary
observation supports the present analysis.

MODE

B'C

0/ A (0 lip Fig.3 Hysteresis cycle of

MODE I ! i the laser intensity
.... .- as a function of the

/ discharge current.

0! XA B' C'. D
0

DISCHARGE CURRENT (ARB. UNITS)
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In this work we analyse the process of generation and control of stable or chaotic soliton
pulse trains in ultrashort pulse fiber lasers. We reveal the underlying low dimensional
homoclinic structure of the nonlinear modulational instability (MI) in a cavity. The
onset of spatiotemporal structures in physical systems may often be described in terms
of reduced modal expansions which preserve the complexity of the original infinite di-
mensional model [1]. The advantage of such a reduction procedure is that the transition
to chaos may be traced back to the universal bifurcation routes of finite dimensional
dynamical systems.

We consider a general model partial differential equation which describes pulse train
formation in fiber laCrrt.. This model encompasses several fiber laser structures which
have been recently experimentally and theoretically investigated such as the modula-
tional instability ring laser [2], the erbium doped fiber soliton ring laser [3], and coupled
cavity lasers [4]. In lossless fibers, the nonlinear dynamics of MI may be well represented
by a simple one-dimensional truncated Hamiltonian system [5]. We reveal here that the
dissipatively perturbed homoclinic structure of this Hamiltonian system permits a sim-
ple description of the nonlinear stage of MI in fiber laser structures.

Pulse propagation in fiber soliton and MI lasers is described by an infinite dimen-
sional map involving the nonlinear Schr6dinger (NLS) equation [6,21. Whenever the
characteristic dispersion (or soliton) length which is associated with the propagating
pulses is much longer than the length of the fiber in the cavity, pulse formation only
occurs over several circulations. As a consequence, averaging procedures may be applied
to the periodic pumping and loss and a single partial differential equation results [3,71.
This spatial averaging is similar to the mean field approximation which has previously
been introduced for the study of transverse pattern formation in resonators [81. Note
that this result is also valid under large amplitude variations of the field at each pas-
sage. In the general case the resulting model for describing the propagation of temporal
dissipative field structures in fiber lasers is the following perturbed NLS equation

*9v I? 02V ., ++(V__ + Iv12v = (A + i6)V + (iV+9)L + i#- +iYV12V+iS, (1)

Here i is the sign of group velocity dispersion in the fiber, A is the phase detining of
the cavity, 6 is the residual loss (or gain) in the cavity, v is the inverse group velocity
in the fiber, 0 is associated with the frequency detuning of the center pulse frequency
from the peak value of the gain, f is the gain dispersion, y describes the fast saturable
absorption (gain) which is introduced by a coupling mirror or a nonlinear switching
element, and finally the forcing term S represents an injected signal.

We have examined the role of each term and the interplay between them in eq.(1)
in determining the dynamics of the waveform generation procWs. We have verified that
the averaging procedure which leads to eq.(1) is valid over a relatively wide parameter
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range by comparing to the numerical integration of eqs.(l) with the solution of the
original map. F-Z, ure [1a] shows for example the generation of a stable pulse train in thc
normal dispersion regime of the fiber in a synchronously pumped MI ring laser. Here
the only gain mechanism is parametric four wave mixing in the fiber. The rcpetition
rate and the contrast ratio of the pulses m.ay be controlled by varying the frequency
and the cavity detuning. Figure [1b] shows pulse train generation in the anomalous
dispersion regime in the active fiber soliton ring laser with injected signal. Here there
is a finite detuning between the peak frequency of the gain curve and the frequency of
the injected signal. Figure [lc] shows the chaotic behavior of the modulated field in a
coupled cavity laser.

The low dimensional nature of the dynamics of tempoiA pattern generation and
selection in fiber lasers is revealed by performing a Fourier mode truncation of the
field v in eq.(1) to the mean and a few sideband modes [9]. This approach permits
to display the stable or chaotic pulse generation from MI by means of phase space
trajectories into or around stable attractors (see fig.(2)). This also enlightens the role of
the homoclinic structure of the NLS equation [91 in determizning the selection between
coexisting attractors in the wealdy turbulent (chaotic in space, coherent in time) regime.
Transition into chaotic regimes is generally characterized by the loss of stability of the
pulse train attractors by Hopf bifurcations into limit cycles. The averaged description
(eqs[1]) may also be extended to the period-two regime of Ikeda instability in the cavity.
In this cace the MI is rc.ponsible for the regular alternation betwcen two time shifted
stablc pulse trains over consecutive transits.

Ivia 12 Vi

o4 44

1100

2

Figure 1: (a) Stable pulse train formation in a MI laser. (b) Soliton train generation in
erbium fiber ring laser. (c) Chaotic modulations in a coupled cavity laser.
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process.
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Using the rotating wave approximation, Risken and Nummedal [1] have

simplified the Maxwell-Bloch laser equations for homogeneously broadened

two-level atoms and have analyzed the linear stability of the uniform steady

states. They have determined bifurcation points to periodic traveling wave

solutions. If I denotes the intensity of the non-zero steady state and a is

the spatial wave number of the traveling wave, the first bifurcation occurs

at or near (I,a) - (Im,am). See Figure 1. The nonlinear problem has been

first investigated by Haken and Ohno [2]. They obtained an amplitude

equation of the form

= Aa + Ba2 a (1)

where a is the amplitude of the traveling wave mode, r is a slow time

variable and aI means differentiation with respect to r. The coefficients A

and B are complex and were determined numerically for fixed values of the

laser parameters. More recently, Fu [3] has reexamined the bifurcation

problem for class B lasers. Class B lasers are of particular physical

interest and include solid state, semiconductor and CO2 lasers. They are

characterized by a small values of 7, defined as the dimensionless damping

constant for the population inversion. As a - am is progessively changed

from negative to positive values, Fu showed that the direction of

bifurcation changes from subcritical (unstable) solutions to supercritical

(stable) solutions. This means that Re(B) equals zero at a - a m. The Hopf
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bifurcation is called a vertical bifurcation at this order of the

perturbation calculations and requires a difficult higher order study. Fu's

results are based on a perturbation analysis of Risken and Nummedal's

equations valid in the limit 7 - 0. We have improved his method and derive a

new amplitude or bifurcation equation of the form
S= Aa + Ba + Ca2. (2)

This equation has been obtained assuming first the limit 7 - 0 and then the

limit I - Im - 0((a - a M) 2) - 0. All coefficients are complex and have been

determined analytically. Re(A) and Re(B) are proportional to I - I and a -

am, respectively.

This equation leads to a richer discussion of the Hopf bifurcation in

the subcritical case (i.e., as a - a < 0) because it admits two stablem

steady states. For a large spatial system, the effect of the nearby modes

can be taken into account by using the method of multiple scales and by

formulating a partial differential equation for the amplitude a:

a Aa + Ba2a + Ca3 2 + Da. (3)

In this equation, ý is a slow space variable and the subscripts r and

represent partial derivatives. D is new complex coefficient. Because of the

3-2
Ca a term, this equation is not the familiar Ginzburg-Landau equation.

However, it has been studied recently by van Saarloss and Hohenberg [4]. In

the subcritical case, new solutions (localized structures) have been

discovered and are of interest for multimode lasers.
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unstable

.)

wave number a

Figure 1. Neutral stability curve of the multimode laser.
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rkye _nv sti aI- noi ar dtynam ics o f -, r o -phonon

genr~ _n M indirec c- _m nduct~ors w"4 I t ofr.:
equations. Die ton inftrin ir non! inearil- of the tw~1,~'u
4trarn~ i.jons' moe can exped-. ~'g~-varietyn of eran~ on

f'rtephoton -pvhonon ,=~ -rat io R,1
In r_ *-Tgap se icon 1uctors the.c±cto and valence

band 1xrmaae tth ferent points of Ithe Br-il i~uifl

one. Thererfore, in such semnicondi ,tor'sr in- er ad elet. ron
transJitin bewen ,tes ls oteLr'e;scnol

ocu fboth photons a. nd phonons are simultaneo-usly inVolved.--
If -an inverted elect~ronic ouaion is matindb opcl

PumpingS: and for s!uffiCiently low temperature of the crystal,
these transitions are mainly accomipanied by the smlaeu

em is ion 04 of phiotons and phonons. ihe emitted phonon. can- b-e
absorbed in. another two-quantum trans iti on inclIud ing ra diat ion

o. aPhoton. Since the phonion energy is much less than that of
tfhe photon the probabil it ies of these processes are simillar.

Th phonon em iss ion rate, howe~ver, can be-,P increae 4h
photon part o~f the two-quantum transition includingý the
emission ot1 both photon and phonon, is stilmulated by, light from
an appropriate laser source. At a hign, enoug Inest ofI
the st.imulatingradato the phonon gain turns out. to 'Le
equal1 to the phonon losses i a pri C~lwar osi ode In

this case one can expect the st imul ated generation of cohl-erent
phonOns, i.e. phonon l~ig
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The threshold energy flux density P of the stimulating ra-

diation inside the crystal is determined by P = 2,2"10 5 /cm1

for Ge and P = 2,6-10 1•W/cm*7 for Si, whereas the threshold

energy flux density of the pumping radiation is PO = 510 IW/cm•
for pumping at the wave length 1, = 1 4jim in Ge and P0 =

3 , 7 *10- 1J/cm for 2 = 0,gm in Si.
If the phonon lasing is s.arted, the subsequent increase of

the pumping rate leads to growth of the photon concentration
inside the crystal. This permits us to decrease the intensity

externally applied stimulating radiation required to sust+ain
the phonon lasing. At a high enoulgh pumping rate the external
source of' the stimulating radiation can l-e. switched off' and
system continues to operate with simultaneous lasing of both
photon5 and phonos.

The threshold value of the energy flux density of the pum-
ping radiation required for the photon-yhonon lasing is P
2,2-I05 i/cmP f or Ge and P = 5,310 14/cm lasifor 5 i.

Routh - Hurwitz criterion is used to investigate stability
of the steady state solutions of the rate equations.
Conditions are found for the stable operation with phonon
lasing and simultaneuos lasing of photons and phonons. The
analysis of The rate equations shows that the variations of
two controlling parameter5 - the intensity of stimulating

radiation and the pumping rate - leads to a great number of

operation states with "smooth" or abrupt change of photon and
phonon gain. Stability, bistability and hysteresis of these
operation states are investigated.
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INSTABILITIES IN LASERS WITH AN INJECTE DELAYED-FEED3ACK-

CONTROLLED SIGNAL

N.A. Loiko, A.M. Samson

Institute of Physics, Academy of Sciences of Belarus,

Skaryna prospekt 70, 220072 Linsk, Republic of Belarus

Fax: 007(0172) 39 31 31

In [1,2] it was shown that control of laser losses or pump

by means of delayed feedback (PB) leads to enrichment of

the lasing dynamics. Here we present theoretical investiga-

tions of a delay effect of the FB forming an injected signal.

Both a phase-locked signal and an uncoherent one are consi-

dered.

In the first case we investigate a ruby nuclear magnetic

resonance (7i4R) laser with a phase-locked injection signal

which originates from Ma laser itself. Such a device was

used in [3] to form the signal with a constant amplitude

and a fixed phase difference relative to the laser field. We

suggest the modified laser system with a FB that organizes

a driving signal with an amplitude depending on a value of

the laser output. idoreover, we suppose that the FB includes

a delayed line, which keeps the phase locking. The analysis

has been made on the basis of Bloch-Kirchhoff equations [3].

In our case Avalue of the injection signal is proportional

to a • V(t-tf), where V is the transverse nuclear magnetiza-

tion, tf is the time of signal passage along the P3 loop

and a characterizes a FB transition factor.
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Investigations of the unconerent-signal case have been

carried out on the basis of a laser model with a delayed

loop forming the signal injected into an active medium in

the direction perpendicular to the lasing field. 'The similar

system was proposed in [4] for a generation of short pulses

in a semiconductor laser and described by rate equations in

a case of a small delay time. We have considered an arbitra-

ry length of the FB loop.

Lethods for analysis and construction of solutions of the

considered systems have been developed. The analysis of the

steady-state stability has been carried out. 3ifurcation va-

lues of the delay tf at that its effect can change dynamics

have been determined. Regular pulsations have been analyti-

cally described by means of an asymptotic integration in the

instability domains. Their main characteristics and struc-

ture have been determined. The stability of the obtained pe-

riodic solutions has been investigated.

It is showm that in the case of the 7 ,-laser with the

phase-locked injection signal periodic regimes with a complex

relaxational structure exist at considerable values of the

delay. Their period = 2 tf+const and the phase portrait

is syfametrical about V=O. .4ith decrease in the value tf the

solution structure is simplified tending to harmonic oscil-

lations. A dynamic chaotization arises via a loss of the sym-

metry and sequential period-dubling bifurcations. At small

values of tf the coexistence of asymetrical solutions is

observed.

Steady states of the equations describing a laser vwith

the uncoherent injected signal are unstable if a ratio of
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the gain relaxation time to the radiation aecay tine is com-

paratively great. There is possible a generation of sequence

of short pulses with periods: To=t f+z, where z characte-

rizes the time shift between the lasing pulse and nearest of

the signal passed along the VIB loop and can be considerable,

and also T =tf /n (n=1,2,3,...). In the last case t•ie pul-

sins structure depends on the degree of overlapping of this

pulses. As the FB depth increases, there appear regimes

with periods equal to (n+1)tf/n. They are characterized by

the presence on this period of the (n+1)-th pulses with

different energies and similar time intervals between them.

iith increasirEg tf these solutions experiences period

doubling bifurcations leading to chaos. The regions of rea-

lization of individual branches of solutions may overlap,

which leads to the coexistence of various attractors in the

system.
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On the eigenvalues and eigenvectors of an inhomogeneously

broadened single-mode laser stability problem

V.Yu.Toronov, LA.MeIn ikov

Chernysheusky State University,

Saratov, 410071, Astrakhanskaya 83, Russia

Most of works devoted to the stability of inhomogeneously
broadened single-mode laser (see Ref.[l] and Refs. in it) concern
only the "leading" eigenvalues of corresponding linearized
equations which determine the stability of the system steady
states. However, in some cases information about all eigenvalues
is required, for example to examine the bifurcation of the steady
state [2]. The aim of the present work is to find all eigenvalues
of the inhomogeneously broadened running-wave single mode laser
equations, linearized at the steady state points. Additionally we
have considered laser equations in the representation of
corresponding eigenvectors (normal form of laser equations [2]).

First we treat as a model system the single mode laser with
active medium consisting of 21 + I groups of atoms having
different frequencies of spectral lines (one "central" and I
pairs of lines, sided symmetrically about "central" line). The
equations of motion for this system are:

&=1
dE/dt -(a+iA)E+ or EP k Wk

b=- I

dP&/dt = -(l+icd)Ph + EDk (1)

dD /dt = -b[Dk - 1 + (E*P + c.c.)],

where E is the field amplitude, P. and D, are the dipole momentum
and population difference of the k-th atomic class, w. is the
shift of atomic spectral line from the steady-state laser
frequency, W, is the relative amount of atoms of a given class, a
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and b are the relaxation rates of the field and inversion
respectively, A is the difference between the cavity and steady-
state frequencies and r is the pump parameter. The Jacoby matrix
for this system linearized at the steady state is:

-A , A, arrW, 0, 0

-A , 0, 0, arlV, 0
4 

(2N-, w, A (2)
4 0

4 4

-bP+, -bQ+. -bA I$ -bB I, -bE

where W is the vector with components (W_,,...,W, ), No is the
vector of the steady-state values for the population differences

4 4

of spectral components, P. and Q. are the vectors of the real and

imaginary parts of the steady-state dipole momenta , 0 is the
zero vector, Aoand B. are the steady-state real and imaginary
parts of the field, I is identical matrix, w is the diagonal
matrix with diagonal elements w_,... w, and %" denotes a
column-vector.

We solved the eigenvalue problem for the matrix (2). In
Fig.1 the eigenvalues positions are shown. There are few
separately placed eigenvalues (denoted as 1,2,3,4,5,6) and the
other ones form three groups (A, B and C) of closely located
eigenvalues. The isolated eigenvalues 1,2,3,4 and zero one exist
yet for 1=0 ( pure homogeneous broadening) but the other arise if
1tl. It was found that the eigenvalues of the groups A, B and C
are almost equal to the eigenvalues of the Rabi-flopping problem
for the atoms of the partial spectral classes in the steady-state
laser field. The eigenvectors corresponding to this eigenvalues
have extremely small projections on the field directions in the
phase space of the system

In the limit of continuous atomic spectral distribution the
eigenvalues of the groups A, B and C merge in three segments of
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lines shown in Fig.1 by dotted lines and the projections of
corresponding eigenvectors on the field directions become equal
to zero.

We have examined the behavior of the eigenvalues in the
wide range of parameters and for different inhomogeneous gain
profiles. By decomposing the phase vector of the system along the
eigenvectors of the linearized system we have obtained the normal
form of laser equations. A study of this equations allows to
determine the character of bifurcation from the steady state and
to evaluate the role of different degrees of freedom in laser
dynamics above second threshold.
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Fig.1 The eigenvalues of the matrix (2) for 1=4, a=3, r = 15,
b=0.05, atomic spectral lines are placed equidistantly with
interval 0.5 and all W, are equal to 1/(21+1). The detuning
of the cavity frequency from the central one is 0.3.
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SUCCESSIONS OF BIFURCATIONS IN THE LASER WITH A

SATURABLE ABSORBER AS DISTRIBUTED SYSTEM

L.A.Kotomtseva, A.M.Samson

B.I.Stepanov Institute of Physics of the

Academy of Sciences of the Republic Belarus

Skaryna prospect 7C, Mlnsk 220072 Belarus

Phone 39-55-21, Fax 7-0172-393131

Results of the investIga iorn of th sem.. -- ass•i•"• qua-

tions for th. ..,e rurmirýI. wave inl the la...e.-" w-t'hn a sa+.urable

absorber are proposed on the basis of the system for normali-

zed values and sizeless coordinates

Bei Bei

az + 5-t + fiei = hpisin i

az a+ - _ hpisin 1i/ei,

api

•- + gipi = aikieisin i' ()

+ g!(w -wa!) ai.e Cos~~~C aie o•

ciki
at d(,- ki) - b~e~i~sin! •,

1(z t) Lj 1pz ,t -1( '')

Here e1 ,•I and piv, are the amplitudes and phases of the
field and of the poar'-zation of the medilm, accordIngly, k,

is the relative inversion of populations, 1=1 for an active

medium, 1=2 for an absorber. Constants d, and g, determine

the relaxation rates of the inversion of populations and
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polarization of the medium, f, characterizes the distributed

losses, ai, bi and h give the efficiency of the interaction

of the polarization and inversion of the medium with the

field, w. and Wal are the frequencies of the cavity and of

the medium.

The boundary conditions

e1 0, )s~e (a, t-t1 ), 1 1 (0, t )='P2 (za, t-"I+q

(2)

e2(z2,t)=el (z1 ,t-t2)/s, 'P2(z2,t)=v1 (z1 ,t-t2)+q2

connect the amplitude and phase of the field at the input

into the active medium e1 (O,t) and v (O,t) (into an absorber

e2 (z 2 ,t) and 'p2 (z 2 ,t)) with their values at the output of an

absorber e2 (zat-ti) and P2(Zalt-tl) (of an active medium

el (zl ,t-t 2 ) and , (z1 ,t-t 2 )) after reflection on the mirrors

R taking into account the time tI (t 2 ) of the passage of light

from an absorber to the active medium ( from an active medium

to an absorber) and additional changes of phases qi.

Steady states of this system taking into account the

detuning wc-Wai are considered and stability of the amplitu-

des and phases is analyzed.

From one to four pulses during the time of the cavity

round trip have been got in computer experiment for the case

Wc=Wai with stable phases. Pushing or pulling of the frequen-

cies in such regimes at various parameters is shown. The ac-

tion of the detuning Wc-Wa2 on the succession of bifurcations

for different beginning conditions is considered. The regular,

quasiperiodic and chaotic regimes with constant or alterating



72 / MC15-3

phases are demonstrated for the variation of the leading para-

meter, such as the rate of the pumping or the length of the

cavity. The reasons and mechanisms of the realization of the

definite regime in this multistable system are analyzed.

The competition of the longitudinal modes , the action of the

rates of relaxation and the cavity geomtry explain the ampli-

tude and phase instabilities.
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PULSE TRAIN INSTABILITIES AND
PULSE STRUCTURE EVOLUTION

IN Nd:YAG LASER WITH ACTIVE MODE-LOCKING

Mel'nikov LA. Tatarkov G.N.
C hernyshevs ky State University, Saratov,

Astrakhanskaya, 83, 410071, Russia

The low-frequency instability (LFI) of the pulse-train envelo-
pe in actively mode locked (AMIL) laser strongly limits the range
o parameters in which the pulse energy and pulse duration may De
effectively controlled. It was shown experimentally 1-41 that
the detuning of loss modulation frequency about few kNz in Nd:YAG
lasers leads to appearance of LFI. Although numerous attempts we-
re made for the theoretical investigation of AML destroying the
ori ins of instabilities remain not clear yet. It was shown also
[4,5] that for adequate determination of the width of stable loc-
king region the single-pulse ( for example gaussian pulse [6D
approximation is not Valid and it's necessary to include the pos-
sibilities of the additive pulse formation within round-trip tem-
poral interval.

The aim of this report is to investigate the subnanosecond
pulse autostructure formation and the mechanism determining the
LFI and its characteristics.

The pulse transformation in the active medium in the
approximation of "thin" amplifier may be written as follows:

EI~t) fE t +aK0+0
dP/dt :-(7;+i•8)P+N1E,("t0,

dN/dtZ-7 6CN-D-Im(Eh0P),

where Efis the pulse field envelope at the k-th ring cavity round
trip ( at the input of active medium ), E' is the output field, a
is the unsaturated gain, 7 and 7,b are the relaxation rates of
medium polarization P and inversion N, 8 is the detuning between
laser line center and resonator frequencies, 0t) is the noise
with gaussian statistics which modeled the influence of quantumfluctuation.

The pulse transformation at the loss modulator is:
E,01, 0=E' tp(0P 0,,

where f(Lt=extr&(1-cos(wt))) is the modulator transmission, m,w
are loss modulation depth and frequency,.F2(1f/T+&), T is the
round tripe time, A is the detuning of loss modulation frequen-
cy, p is round trip losses. In our calculations EO) is repre-
sented as a step-wise function with the step size 0.4 '-1

We investigated the influence of the loss modulation
frequency detuning on the dynamics of laser with the next values
of parameters: a=F., p=0.9, m=0.2, 8=0., 7=2xx100 GHz, 7rt=jxx10
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-I ~n ~1600

A 1144~ n 800
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Fig.1 Pulse shape evolution in the Sgiking regime. n is round
trip number. A =1 kHZ.
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kHz. These values correspond approximately to the Nd:YAG laser.
The noisy distribution 0t) was used as an initial field.

After some transients the stable AML regime occurred in the re-
gion -8 kHz<A <-2. The pulses with minimum duration about 100 ps
are obtained at A ;-5 kHz. This is connected with dispersion de-
lay of pulses in active medium which may be estimated as iaCn/7l,
wnere f is the saturated gain [6].

At the negative and positive detunings A out of stable AML
region three types of the unstable regimes were observed: first
type is the regime of pulse-train envelope modulation at the
frequency cw , second type is irregular spiking at frequencies w
or w /2 ( for large A ) and third type is characterized by inter-p

P
mittent temporal behavior between two previous types. In the re-
gime of second type the period of spiking does not vary appre-
ciably meanwhile the instability of the spikes amplitudes in-
creases with the detuning.

The hierarchy of the dynamic regimes observed with the in-
creasing of A is qualitatively similar to the behavior of the Q-
switched single-mode laser under the modulation frequency varia-
tions and is typical for the systems with nonlinear resonance.
The calculations show that the appearance of LFI is connected
with the mistuning of pulse period and loss modulation periods
which leads to additive effective low-frequency loss modulation.
The pulse-structure evolution strongly correlates with the type
of the LFI regimes. In the spiking regime as shown in Fig.1 the
pulses become multi-humped. During the temporal evolution there
is slow sliding of pulses and arising the new ones from noise at
the moments of minimum loss. It allows us to suppose that the LFI
at these regimes are strongly affected by the level of sponta-
neous emission as it was pointed out in Ref.4. The arising of
subnanosecond pulses from noise fluctuations leads to stochastic
structures of pulses, their energy and relative position and con-
sequently to variation of spike am pitude.

Usin the computer simulations the pulse structure evolution
and low-I requency pulse-train instabilities in the Nd:YAG laser
with active mode-locking are investigated. The different types of
laser dglnamics are distinguished in the dependence on the loss
modulation frequency detuning. The detailed results for pulse
profiles and their evolution are presented in the spiking regi-
mes. It was shown that these regimes are characterized by mutual
influence of deterministic processes (the nonlinear oscillation
of pulse energy) and stochastic sources (spike amplitude modula-
tion due to spontaneous emission). This model may be used for the
investigation of other activated-crystal lasers.
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THE "tRANSITIONS TO CiiAO.' IN TIlE I.A.S-ER
WITI I A SATURABLE ABSORBER

S.A.Tataikova, V.V.Tuclhin

Chernysheosky Slate Uninfeetsily
Asliakhonskaya 83, Salalov, 410071, Russia

tnt roduct ion.
"The CO2 laser with a saturable absorber (ISA) generates the

rontinuons puls -soquence which is well known as a passive Q-
switchinig (PQS). Single pudls consists a narrow peak with the
long oscillating tail. The pulse length and its shape essentially
depends from a choice of the absorbing media and its parameters
The occurrence of chaos in this system has been demonstrated by
the experimeital and theoretical investigations. Chaos arises ac-
cording o..... of the famous s,-enarios. The theoretical model ade-
quately describing the dynamical chararteristics consists of the
five differential equations for the field, polarizations and po-
p ulation differences of the amiplifying and absorbing rells [11.
In this model LSA has three fixed points correspondint to the
trivial laser-off solution and stationary solution. As tIe recent
investigations showed [2,31 depending on the nature of the in--
stability of these points ditrferent temporal regimes can arises.

Model and results.
For the case of a single mode regime with perfect tuning the

equalions have Ihe following form [1]:
dz/dI-clUC 2 u-z
du/dt.-d1(xz-u)

dv/dt=d2(yz-u) (1)
dx/dI: b1(f-x-uz)
dy/di b2( I-y-aoe)

where 1- ,2 is dimensionless intensiIy, u and v are
polar i tal ions, x and y are populal ion di fferences of the
amplifying and absorbing cells, c1  is gain coeff.icient, c2 is
absorber coeff icien t, d " -2 ab"/ AW, whele rl. are the
transverse relaxation constan ts, bhi 2_. 2 31,2 /Awp, where 1r1,2 are
tihe longi I udinal relaxat ion constan Is, Aw P is the dampingp
constant of the field in the empty cavity, a is saturalion
paramlet"r The system (1) was studied for fhe parameter values
co~rr(.iqxpding to CO2 laser with C1131 as an absorber [4]. These
parameters are following c! I3.725, d4: 40, b V0.0024, b2- 0.001,
a-0.5. As the rontrol parameters the absorber parameters c2 and
d2 have been selected.

In Figi1 the bifurcation diagram of the stationary and pe
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riodic solutions is illustrated. The solution stability anrd its
loss investigated numerically.

d 2

0. 1LJ3

LL

0.1 04- og jC

Fig.1 BiRhuralion dti:,.; o01 thf set3dy -state and periodic
sohItions in the l'assive Q Switching Lasr.

The trivial laser-off solu ion is the unstable (saddle)
steady-state in the all region of the control parameters one
linear stability coelficien t have real positive value. Nonzero
steady-state is stable in region 1. This steady-state losses its
stability when it is crossing the line to The bifurcation is the
hard one. As a result Ithe bislability region exists bctwecn the
continuously oscillating with the constant intensity and ptlse
geneiation. The PQS pulse consists of the undamped spikes. The
pulse shape essentially depends on the absorber parameter d2' The
limil cycle loses its stability on the line 1I when the mullip
tier crosses, the unity circle. For the large absolute valu: .
I(his bifuircation is period-doubling but foi the small ones tan
gfrnit bifuicalion (intermittence).In Fig.2 second case is fiesen
ted As illustrated in FMi.2 f Ih lemporal evolution of Ihe chatv
tic attrator is violated 16y the sudden bu rsts of thr high inlen
sity. This bifurcation arise when the multiplier crosses Ihe
unity circle In the point 1.

36.31 36.31

/ ,,). X
I i , a l 2. 1 ':zzpu laa l L 'VO J iu !i ai-mt |,i na•u piia[ iI h aii iu l h~i , c im aIti•.

attractor lot the paranetoer C2 ' -0.6, i2. -o22

We study thoe beha%-ior o( the iiiaxitimII I yabrtrirv eAtlI-i,! when we
movc into region 3 The exponcnt valic is equal 0.31 at the ap
pearance moment, and then for d2 0.•2 l.yapounov exponent increascs
to 0.61, and for d =0.175 decreases to 0.40.

When we cross line 12 limit cycle again becomes stable. Thl.

1wriod of this cycle equals 2 gsie. for the point (----0.6. it2 0.15
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and increases when we move to c2 - -0.02.For the small d2 c0.001 13"91 I • •x•

the multistability regiondisplays. In this region 78"
limit cycles are stable
and can be designated TIn'
in terms [2]. The bounda-
ry of tie stability re- 13.31 i ,-_ ",•
gions of these cycles no
coincide. When we move to
the axis c 2 or d we dis- 6.7
cover the transition from
the stabilit region of 08
the cycle with n peaks to

n+l peaks. Moreover, in n
this region at least five
stable 1imit cycles can 5.6"
coexist simultaneously . J•which differ in initial 8.8conditions. In Fig.3 the 0.'i msec
shape of PQS-pulses is
presented. The period of Flig 3. T,.euvulti :lutitans and phase
hese pulses equals from portraits of the coexisting nwii

6 to 40 .StC. cycles for -- 0.6, d-0.0006.
The unstable fixed points - zero and two nonzero steady states

- influence on the form of these cycles. The situation here is
similar on the heleroclin ic one [5]. The phase trajectory
consistently goes round the noniero steady slates and crosses
zero point.

In conclusion we study numerically system (1) and demonstrate
the arising of the chaotic regimes in a Passive Q-Switched Laser.
We obtain two scenarios of the transitions to chaos - period-
doubling and intermittence. Our results confirm the influence on
the laser dynamics the unstable fixed points.
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Rev.A 18 (1976) 236.
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4. E.Arimondo, F.Casagrande, LA.Lugiato, P.Glorieux // Appl.
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Generalized finite-dimensional model of an Inhomogeneously

broadened single mode laser

LA.Melnikov, V. Yu.Toronov

Chernysheusky State University,

Saratoo, 410071, Astrakhanskaya 83, Russia

Numerical simulation of the dynamics of inhomogeneously
broadened lasers requires an enormous computer resources because
of their semiclassical models contain infinite degrees of
freedom. Therefore the construction of a finite-dimensional
models for such lasers is the present-day problem.

In Ref.[l] we have proposed the set of ordinary differential
equations which describes the dynamics of the single-mode laser
with Lorentz-broadened inhomogeneous spectral line in the case of
central tuning of the cavity frequency. The aim of the present
work is the generalization of this model for the arbitrary gain
profiles and nonzero detuning.

The Maxwell-Bloch equat ions of mot ion for the
inhomogeneously broadened single mode laser are:

dp(w,t)/dt=-(l+iw)pQw,t) + En(w, t)

dn(w,t)/dt=-b[n(wt) - 1 + 2 (E*p(wt)+c.c.)] (1)

dE/dt= -(a+ i A)E + arfp(w, t ) ( w) dw

where p(wt) and n(wt) are the dipole momentum amplitude and
population difference of the atoms having transition frequency
shift from the line center equal to (o, E is the electric field
envelope, a and b are the relaxation rates of the field and
population difference, A is the cavity detuning, r is the
excitation parameter and W'(Q) is the unsaturated gain profile.

Our model is founded on the decomposition of the atomic
dipole momentum and inversion in terms of especially selected set
of functions of the frequency shift:
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,,= Pnot)=E Nk(t)4Q) (2)
k=-6 k=-do

where
#,(w)=exp(1klx), x=2arctg(w1'n). (3)

This choice is based on the analysis of 0-dependence of p(wt)
and n(wt) in different operation regimes and provide a fast
convergence of the series (2). The convergence of these series
can be accelerated by choosing of the "width parameter" 'q.

Keeping the addenda with Ikk<m in expansions (2) one can
obtain the set of ordinary differential equations of motion for
the coefficients P. and Nk and the field:

l=rn

dP&/dt = -Ph + 71 E aPbi + ENk
1=-rn

dNI/dt =-b[N + 8o + t (EP 1 + EP•1) (4)

k=m

dE/dt = -(a + iA)E + or E W1 P1

&=-M

where as =%l&jl* 1). W,=<',jW~a)j#1 . In Fig.l the convergence of
solutions of the set (3) to the solutions of original Maxwell-
Bloch set (1) is shown. The reliability of our model is examined
in the wide range of laser parameters. We consider the
possibility to apply our approach to the other laser systems with
inhomogeneous broadening.

Reference
I.V.Yu.Toronov, "Simulation of the self-pulsing instability in an
inhomogeneously broadened single-mode laser by the finite
-dimensional model" in OSA Proceedings on Nonlinear Dynamics in
Optical Systems, N.B.Abralzam, E.M.Garmire, P.Mandeleds. (Optical
Society of America, Washington, DC, 1991), Vol.7, pp.359-363.
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Fig.l Time traces of the real part of the field and phase

portraits in the field - inversion plane for a) original set of

equations (1), and for the set (4): b)m = 3, c)m - 7. The
parameters values are r= 5, = 5,b = .5, = O. The

inhomogeneous gain profile is of the Lorentz-type with halfwidth

about five homogeneous ones.
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COMBINATION MODE-MODE COUPLING
AS AN INSTABILITY MECHANISM IN A DYE RING LASER

Khanin Ya.I., Koryukin IV.
Institute of Applied Physics, Russian Academy of Science

46, Uljanov Str., 603600 Nizhny Novgorod, Russia
Tel. (831-2) 384587 Telex 151129 FIZIK SU

The low-frequency time-dependent processes observed in
the spectra of class A and class B lasers (according
Arecchi [1]) can't be explained using the rate equations.
However, by introducing other nonlinear processes of mode
coupling in addition to the laser medium saturation one
gets a deeper insight into the nature of the multimode
laser instability. There was a successful attempt in
ref.[2] to take into account the influence of mode coupling
on laser action via stimulated Brillouin scattering.
However, it should be natural to seek for the reason of the
nonlinear mode coupling in the laser medium itself. In the
next high-order approximation of the dynamical theory of
laser with adiabatically eliminated polarization, the
combination mode-mode coupling (OMMC) due to the mode-
induced inversion oscillations is taken into account [3-5].

The OMMO as a possible mechanism of time-dependent
lasing was considered in a few papers [5-8]. Within the
framework of the travelling-wave dye laser model it was
shown that the CMMC is responsible for the long-term
irregular transient process but it does not lead to an
instability [9]. In this paper the mode spectrum was
assumed to be equidistant. Under the real conditions,
however, the nonequidistancy is highly probable and its key
role in the case of the solid-state laser instability has
been proven [6.10].

The equations that take CMMC into account can be
represented as:
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dEk/dt + L(Wk- wk)E =kE k{•k[ nA-

- __ __ _ __ _ E kEQ

2II Ap 1(~C).)~j1  Ek

an

atk I k121

t~ = fno*Vdu, nkpWp : = A0*v~pdv,

where Ek is the amplitude of the k-th mode of the field, n
the normalized saturated inversion, A the nonsaturated
inversion Cthe saturation parameter), Vk the eigenfunction
of the laser cavity, 2k= Re'k' "k=[I+ (wk -
WO)2/•2] 1 the Lorentz function of line shape with the

center at the frequency oO, ok the laser frequency nearest
to the cavity eigenfrequency (o. 71, and 71 the
relaxation rates of the laser medium.

We investigate the influence of control parameters, such
as the nonequidistancy, the ratio of the intermode beat
frequency to the inversion relaxation rate and the number
of modes, on the OMMO efficiency in a ring dye laser. The
explicit time dependence of the combination terms, which
disappears only in the absence of nonequidistancy, has
revealed the analogy between the laser models with OMMC and
the balance model with the external modulation of cavity
losses. On the basis of this analogy, we obtained the
criteria for excitation of deep compensated mode intensity
pulsations, witch confine the domain of time-dependent
lasing to the low values of nonequidistancy.

These criteria have been confirmed by numerical
stimulation. In the absence of nonequidistancy the laser
action is steady-state. The same results is obtained in the
domain of marginally small nonequidistancies; the modes
frequencies calculations show that the laser modes are
synchronized in this case. An increase of nonequidistancy
leads to time-dependent lasing including chaotic regimes,
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witch can again become steady-state with further increase
of nonequidistancy. Besides the nonequidistancy. the laser
dynamics is strongly dependent on the intermode spacing and
the number of lasing modes determining the width and
position of the instability region in the parameter space.
Inside this region, compensated mode intensity pulsation
are developed which can both be regular and chaotic.
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CHAOTIC BEHAVIOR ASSOCIATED WITH A MULTICODIN•ISION

BIFURCATIONS IN A LASER WITH A SATURABLE ABSORBER

A. G. Vladimirov

Research Institute of Physics,

St.Petersburg State University,1,Ulianovskaya st.,

St.Petersburg-Petrodvoretz, 198904,RUSSIA
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It has been shown both theoretically and experimentally

that a laser with a saturable absorber (LSA) may exhibit

various types of chaotic behavior. Theoretical

investigations of such behavior in LSA with 002 amplifying

medium has been carried out on the basis of three level :

two level rate equation model [1 ]. In order to improve the

agreement between the model and experimental observations

the extension of the model including the polarization of

molecular absorber has been proposed in Ref.[2). It has been

shown in [2) that a new types of chaotic regimes arise due

to the time lag between the polarization and field. Here we

show that these chaotic regimes are associated with a

codimension- four bifurcation point. We present the detailed

investigation of the bifurcation sequences leading to

chaotic operations in the vicinity of this point in the case

of detuned LSA .

The equations under consideration are similar to those in

Ref.[2] but include the phases of electric field and
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polarization in the absorbing medium as well as frequency

detuning. We consider the bifurcation point in the parameter

space for which complex Jacobian matrix of the zero

intensity stationary solution of ISA equations has a triple

zero eigenvalue. In the vicinity of this point the

application of normal form theory yields three reduced

equations governing local dynamics:
dx/dT = y,

dy/dT = x -(x 1 +i\ 2 )y -xz, (1)

dz,/d = --az + Ix1 2 .

where x and y are complex variables, z is real variable. The

parameters x,1 X2 , and a are real. In the case of perfect

tuning (\ 2 =0) the dynamics of the reduced equations (1) is

equivalent to that of Shimizu- Morioka equations [3]. These

equations has been proposed in Ref. [4] and has been shown to

posses various types of chaotic solutions [5]. Here we

investigate the influence of frequency detuning on the

chaotic solutions of reduced equations and find the typical

bifurcations leading to chaotic behavior in detuned ISA. We

consider the limit a ->0 in Eqs.(1), which more closely

represents experimental situation and investigate the

bifurcations, which are responsible for the origin of the

periodic and chaotic Q- switching in ISA. We study thtse

bifurcations using ID map.
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DYNAMICS OF CW SOLID-STATE LASER WITH SATURABLE ABSORBER
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The investigations of cw operation of solid-state laser with narrow

bandwidth intracavity saturable absorber are interesting from a view point of

nonlinear dynamics problems as well as for spectroscopic applications. A

number of publications was devoted to the matter, but as for the experimental

works, they were carried out only with gas lasers1 ' 2 (we do not mention here

great number of experiments with broad-band saturable absorbers).

The preliminary results of our experiments with YAG:Nd lasers with

intracavity molecular cesium cell were reported earlier 3 in connection with

frequency stabilization problem and possibility to develop laser frequency

standard at the wavelength of 1.06 pm. Frequency servo system with

out-of-cavity Cs 2-cell provided stability level of the order of 10-'° - 10-"

rel. un. 4 Intracavity technique seems to be perspective, one can predict the

stability level of the order of 10-12 rel. un. 3

In order to realize this potentiality, some problems of dynamics of

solid-state laser with intracavity cesium cell should be investigated. In

particular this is the dependence of dynamics on fine tuning of laser

frequency over Lamb dips of the molecular cesium absorption spectrum. Our

report is devoted to these issues.

The sub-Doppler spectrum of saturable absorption of Cs 2 on the region of

YAG:Nd laser tuning at 1.06 pm represents a rich set of homogeneously

broadened lines (Lamb dips) corresponding to various vibration-rotation

components of the transition X1X', -> AZ*u. Two relaxation times, both in

nanosecond region, appeared to be sufficient for laser dynamics, i.e. decay

times of the upper level of molecule Cs2 and lower laser level of Nd3*-ion.

When the laser is tuned exactly to the center of a Lamb dip, one can expect

that experimental results should fit to the theoretical prediction based on
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the results of Ref. 5 . Actually, we observed the corresponding sequences of

periodical regimes, PQS and PQS with ringing tails, as well as chaotic

behavior.

We investigated the dependence of laser dynamics character on saturation

power of Cs 2. In experiment this saturation power can be varied in the wide

range by cesium cell temperature. We founded, that at the exact tuning to

Cs 2-line center this dependence is in qualitative accordance with the analysis

based on Ref. 5 . Our theoretical model was modified in order to analyze the

role of detuning. The numerical simulation gave the results which satisfactory

fit the experiment. In such experiment we observed various dynamics effects,

particular, the dependence of pulse repetition rate on laser frequency tuning

over Cs 2-line.

Reference

1. M.Tochikawa, K.Tanii, T.Shimizu, "Laser instabilities and chaotic pulsation

ir a CO2 laser with an intracavity saturable absorber". J. Opt. Soc. Amer. B,

1989, vol.5, pp.1077-1088.

2. D.Dangoisse, A.Bekkali, F.Papoff, P.Glorieux, "Shilnikov Dynamics in a

Passive Q-switching Laser", Europhys. Lett., 1988, vol.6, pp.335-340.

3. S.N. Labinskii, A.A. Mak, O.A. Orlov, V. I. Ustyugov, "Ultrasensitive

intracavity spectroscopy with solid-state lasers and the problem of long-term

laser frequency stabilization in the i-Mm region", in Quantum Electronic Laser

Science, 1991 Technical Digest, v.11, (OSA, Washington, D.C., 1991), p. 2 3 4 .

4. A.A.Mak, V.I.Ustyugov, "Amplitude and frequency stabilization of

solid-state lasers", Proc. SPIE, 1989, vol 1132, pp.58-62.

5.B.Zambon, "Theoretical investigations of models for the laser with a

saturable absorber: a case of homoclinic tangency to a periodic orbit",

Phys.Rev.A, 1991, vol.44, No.1, pp.688-702.



90 / MC22-1

Thin Layer Lasers

A. N. Oraevsky
P. N. Lebedev Physics Institute

Russian Federation

A theory of a thin layer laser is presented, i.e., a laser whose active medium length along
the wave propagation is less than the wavelength. It is shown that such a laser exhibits
a number of peculiarities compared with an ordinary laser.
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The single-mode inhomogeneously broadened [SMIB] laser in the bad cavity

configuration has now become a classic example in the demonstration of

low-excitation instabilities in nonlinear systems. The general theoretical

models in terms of integro-differential "Maxwell-Bloch" equations have for

long been shown to be quantitatively accurate for the description of

spontaneous pulsations, experimentally obtained in high-gain lasers such as

the He-Xe[1,2]. In terms of dynamical aspects these equations are, because of

a polarization integral, of infinitely high dimensions, rendering the physics

of the behavior rather inscrutable. Recently we have constructed a much more

tractable model which consists of only 6 differential equations, yet its deep

numerical investigation has shown a one to one qualitative analogy with the

infinite-D set of equations in a large range of values of the various control

parameters [3]. The simplicity of our model resulted in the clarification of

much of the physical insight connected with SMIB laser dynamics.

In this paper we include spectral cross-relaxation terms in the 6-D model

and undertake a systematic study of their influence on the general dynamical

behavior of the system. The importance of such terms which stem from strong

velocity-changing collisions in the lasing medium has already been pointed out

[41, but no attempt has been made to characterise their exact role.

Including spectral cross-relaxation terms in the equations derived in

ref.3 yields the following set:

d-E(t) = -k{E(t) + 2C[2p (t) + p (t)0} (la)
tr 0

d
dtP~)=P(t) + p1 (t) + E(t)D(t) (lb)-d - rt = -Pr W i

d
d (t) = -P (t) - wp (t) (lc)
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Fig.1 Time dependence of IE(t)I for k = 5, ' = .05, and X = 1.1 :a)stable
S

output, and b)regular pulse train, obtained respectively without, and with the

inclusion of spectral cross-relaxation terms.

-D(t) = -x-D~ ) + 1 + Etp (t) + cD(t) - giD (t)} (ld)
dt r

d
dt po(t) -p (t) + E(t)D (t) (le)

ddD (t) = -y{D (t) + 1 + E(t)p (t) + eD (t) - 2glD(t)} (if)
0 0 0 0

The effect of velocity-changing collisions has been introduced through

the parameters c and pi.

A set of waveforms as obtained from numerical calculations with parameter

values corresponding to the high gain He-Xe laser are shown in Fig.la and

Figs.2a-c, in the case where spectral cross-relaxation terms are neglected ,

and in Fig.lb and Figs.2b-d when they are included. These first results are

suggestive of the following remarks:

i)The inclusion of strong velocity-changing collisions yields a lowering

of the instability threshold (compare Fig.la with Fig.lb, both obtained with

the same pumping parameter).

ii)The low excitation period-doubling route to chaos found in the absence

of cross-relaxation terms disappears in favor of regular pulse trains as shown

in Figs.2a-b, and Figs.2c-d. Other Numerical scans show however that the

period-doubling route inherent to the system is still a characteristic of

eqs.1 with the inclusion of velocity-changing collisions, but at much higher

excitation parameters. This would partly explain the difficulty of

experimentally achieving clear hierarchical dynamics such as period-doubling

routes with physically accessible pumping levels [5].
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Fig.2 Comparison of spontaneous pulsation waveforms obtained, respectively

without (a,c), and with (b,d) the inclusion of spectral cross-relaxation terms

The excitation parameter is X = 1.75 (Figs.a,b), and X = 1.9 (Figs.c,d).
s S

These first results demonstrate that the description of unstable SMIB

laser properties is possible with simple models, which offer straightforward

numerical handling, and better insights into the physical mechanisms connected

with SMIB laser dynamics than do the usual inscrutable equations. The

inclusion of strong velocity-changing collisions in the dynamical equations

surprisingly shows a lowering of the instability threshold as well as a

reduction of the chaotic behavior.
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We consider the problem of Second Har- this domain of bistability: the "lower" branch,
monic Generation (SHG) inside a resonant cav- starting at the Hopf bifurcation of the steady s-
ity, pumped by an external laser. The elemen- tate and finishing at the limit point corresponds
tary process that takes place in SHG is the ab- harmonic solutions. The "upper" branch start-
sorption of 2 photons of frequency w and the ing at the left limit point and going to the right
emission of one photon at frequency 2w. Drum- corresponds to pulsating solutions. The first
mond et al[1] have shown that this problem can branch is well approximated by the Hopf bi-
be modeled by two ordinary differential equa- furcation result[3]. The amplitude of the oscil-
tions for the (complex) amplitudes of the elec- lations follows a (E - 1)1/2 law. On the other
trical fields: hand, the amplitude of the pulsating periodic

solutions follows a different law. We show that
dR. - - 7 RI + R, R 2 + E, (1) the amplitude changes as E2 / 3 as E - 00.

ds Because the hysteresis domain appears for
dR2  2 R2 - R•, (2) moderate values of E, we cannot analyze the
ds two branches of stable periodic solutions. S-

where overbar means complex conjugate. We ince the branch of harmonic solutions is well

use normalized variables, R, for the fundamen- described by the perturbation analysis valid n-

tal mode, R2 for the second harmonic mode and ear the Hopf bifurcation, we propose to describe

E for the input field amplitude that is chosen the branch of pulsating solutions by an asymp-

as real and positive. The real constant - is the totic analysis valid as E - oo.

ratio of the relaxation constants -f = 7il/7.2 of For the simplicity, we consider the case f =

modes 1 and 2 in the cavity. The time is s- 0. We introduce the new variables rl, r2 ,t and

caled to the cavity decay rate 72 of the second the new parameter q defined by

harmonic mode. R , = E '/5t,, R 2 = E '/5r2,

The steady and time periodic periodic solu- E 2  -

tions of Eqs.(1) and (2) have been investigated t = E 1'/s and '1= E1 /2  (3)

in detail in [2, 3]. They showed that this system and the decompositions
displays two important bifurcation features: (i)
a Hopf bifurcation to harmonic periodic solu- r, = x + iu and r2 = y + iv, (4)
tions, (ii) bistability of periodic solutions.

A bifurcation diagram of the periodic solu- The limit E large now corresponds to r7 small.
tions for SHG is shown in Figure 1. In this fig- The long time periodic solution of these e-
ure, we represent the maximum of -I(R 1 ) as a quations for q/ = 0.008 is shown in Figure 2.
function of E. Full (broken) lines correspond to The figures suggest that the periodic solution
stable (unstable) periodic solutions). The llopf consists of a periodic sequence of pulses first in
bifurcation is located at E = 1 and bistabili- u and y (z remaining small) and then in z and y
ty occurs for 7 < E < 8. A dramatic qualita (u remaining small). This suggests to apply the
tive change of the periodic solutions appears in method of matched asymptotic expansions[4].
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The method consists of determining separate where C is the maximum of x and a is the ex-
approximations for different parts of the solu- ponent used in the asymptotic development
tion. These different approximations are then
connected by using appropriate matching con- x(T,rq4a) = ,7a [xo(T) + '4 az 1 (T)+ - ] (6)

ditions.
From Figure 2, we note that the pulsating

periodic solution consists of four different parts, References
namely:
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Stage 3: x and v are small, y and u are large [21 P. Mandel and T. Erneux, Optica Acta 29,
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Stage 4: u and v are small, x and y are large

We analyze in detail stage 1 and stage 2 as [3] P. Mandel, N.P. Pettiaux, W. Kaige, P.

well as their connection. Of particular interest Galatola and L.A. Lugiato, Phys. Rev. A

is the matching between the different approx- 43, 424-432 (1991);

imations. We then briefly describe the contri-
butions of the following stages. [4] T. Erneux, "Bifurcation analysis in nonlin-

We show that the duration of the pulse is ear optics", ULB Lecture notes in nonlinear

= 4a optics, 1991.
AT=-.j- lnm 7,(5)
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Figure 1: bifurcation diagram
for SHG, 6 =0.
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Introduction

Stimulated Brillouin scattering (SBS) is the dominant non-linearity in silica optical fibres. In high-
finesse all-fibre ring resonators with fibre lengths of the order of 10 m stimulated Brillouin scattering
can be observed at input power levels in the range of 10 to 100 p.W [1]. Above pump threshold
fibre optic ring resonators show intensive laser oscillation at the Stokes wavelength and therefore are
called Brillouin ring lasers (BRL). An important application of Brillouin ring lasers is the all-fibre
optic ring laser gyro [2].

Most types of lasers show transient intensity oscillations with periods that are considerably
longer than the cavity decay time. Typical values range between 0. 1 As and 10 jus. In this paper
analytical and experimental investigations of intensity oscillations of fibre optic Brillouin ring lasers
are presented.

Theory

In the stationary case SBS can be described by a set of two coupled differential equations for the
pump intensity I, and the Stokes intensity 12, respectively:

I, + 2 cI1 = (1)

pump directional 12 + 2a12 = g,'9112 (2)
laser coupler (KrT) a

z is the spatial coordinate, a is the damping
coefficient of light waves, and gB is the Brillouin

wave, 12 gain coefficient.

pump /The figure on the left shows a schematic
wove t, / diagram of the fibre optic Brillouin ring laser

fibre loop /setup. Assuming resonance for both the pump and
length Loo the Stokes wave, the boundary conditions at the

ports of the directional coupler for the pump and
the Stokes intensities are given by

S= Vt,(K. 1/i" ) - T'FIp) and I2(L) = V; K2 .12(0). (3)
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K and T are the coupling and the transmission factor of the coupler with K2 + T2 = 1. Coupler loss
is considered as lumped loss by the factor V. with Vr < 1. p is the intensity of the pump laser that
is coupled into the ring resonator.

In this paper only intensity variations are considered which occure slowly compared to the
resonator roundtrip time TR. The time dependence of the pump and Stokes intensities can then be
calculated iteratively. For that eqs. (1) and (2) have to be integrated for calculating the intensities
after one circulation through the fibre loop from given initial values. New initial values for the next
roundtrip can be calculated by the boundary conditions (3). With fibre loop lengths up to about 10 m
the gain of the Stokes wave during one circulation is small enough so that the z -dependence of 12 in
(1) can be neglected [3]. The analogous assumption for (2) is the neglection of pump depletion
during one roundtrip through the fibre loop. This leads to approximate solutions of (1) and (2) for
one roundtrip:

ll(Lt + TR) = 11(0,t)'exp[(-g,1 2(0, t) - 2a)L]

I1(O,t+TR) = I2(L,t)'exq(gII(L,t) - 2a)L]

For analyzing the time dependent behaviour of fibre optic Brillouin ring lasers we derive new
differential equations by

II(Lt + TR) - 11(Lt) - dI(Lt) and 12(0, t + TR) - 12(0, t) dI2(0,t) (5)
TR dt Ti dt

which can be interpreted as an interpolation between the time-discrete values of the iteration. These
new differential equations (5) perform a complete description of the temporal behavior of a Brillouin
ring laser because they, in contrast to eqs. (1) and (2), take into account the boundary conditions at
the ports of the directional coupler. Nevertheless only intensity variations are considered that happen
slowly compared to the resonator roundtrip time T•.

The stationary solutions of (5) are

It2(L)-F 2ir and a12(0)= 2 .In V + (lI- V) (6)
I()FgIL -/L FIn.)

with V= VKV.K and V. = exp(-aL). F is the finesse of the ring resonator. The relation between F
and V is F = -n/ln(1V). At pump threshold the loss of the Stokes wave is compensated by the
Brillouin gain. The pump intensity at this threshold is given by [4]

IpT = l•"(L). - 1 ) .(7)

A solution of (5) shows that time-dependent perturbations of the stationary solutions given by
(7) decay in form of damped harmonic oscillations with a damping rate a, and an oscillation
frequency w, given by
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I - V-exp - d~ g~2I,() 2 2 (8)
2,- TRand w,= I - '

Experiment

A fibre optic ring resonator made of conventional telecom optical fibre was used to observe transient
oscillations experimentally. The narrow bandwidth (< 5 kHz) pump laser had a wavelength of
1.32 gm. The resonator data were: finesse F = 550, coupling factor K = 0.9962, coupler loss
factor VK = 0.9984, fibre damping coefficient a = -0.38 dB/km, and effective mode field area
Af = 78.5 Am2. The fibre loop had a length of 9 m which was modulated periodically by a PZT-
type phase modulator and a sawtooth generator. Assuming complete polarization scramnling we
calculated a pump threshold of P,. = Ip -A = 21 gW (with gB = 4.2. -0U m/W) which compa-
res well to the measured value of 30 jLW. The frequency and the amplitude of the sawtooth generator
were chosen in such a way that the free spectral range of the resonator was scanned 13.2 times per
second.

experiment theory

0.15ms 0.15m$a

V)

The picture on the left side shows the measured Stokes intensity within the Brillouin ring
laser at an input pump power of three times the pump threshold. An overshooting of the Stokes
intensity can be seen that decays after some 10 pss. This overshooting occures due to the above
calculated transient oscillations. Before the Stokes intensity could reach its stationary value the ring
resonator was detuned by the phase modulator. The picture on the right side shows the Stokes
intensity which was calculated iteratively under the same conditions as in the experiment. Both
measured and calculated curves match very well.
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Based on the first principles of quantum mechanic the density of prob-
ability distribution function W(x,p) is created for quantum electromag-

netic field (QEF) - Figs. 1, 2. Unlike a well-known distributions of
density of quasi-probability (as Wigner function et.c.) W(x,p) can be

measured directly in 8-port homodyne experiment or in the experiment
we propose. Using W(x,p) one can calculate the probability to have the
field quadratures x and p in a chosen area of a phase space, find the min-

imum in amplitude or phase fluctuations of QEF. W(x,p) predicts the
lemniscate-of-ellipse shape of the dispersion of squeezed QEF (Loudon,
1989; Kimble, 1986). Using a methods of quantum optic in experimental
study of W(x,p) one can reconstruct the wave function of QEF and, in

principle, the wave function of an emitting substance.
Applied the method to squeezed field being in thermal reservoir one can

find a smooth transformation of W(x,p) to classical distribution, while
the temperature of reservoir increases.
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We investigate a dynamical system consisting of a one-facet-AR-coated

laserdiode coupled to a T-shaped resonator.

The laser shows very complex dynamics depending on the ratio of the

two cavity round-trip frequencies. In the vicinity of the ratio 1:2, switch-

ing between various states is observed, taking place on a timescale much

longer than the fast intensity dynamics. Starting from the mode-locked

state, which is related to the modulation of the signal with the compound

cavity frequency, the first subharmonic appears. From this state the sys-

tem switches to different others without changing any control parameter.

Some of them belong to a period doubling route to chaos, other states are

odd harmonics of the subharmonic, chaotic states belonging to these and

finally a state with a broad nearly structureless power spectrum. All these

states are closely related to the delay-scenario introduced by Ikeda(1). Es-

timations of the correlation dimension from a time-series for a state with

broad-band power spectrum yields D2 > 7 which is also in agreement with

the Ikeda-model.

In the vicinity of other simple ratios of the cavity lengths similar switch-

ing between different states can be observed, but these states are different

from those discussed above with respect to the dominant frequencies.

We explain the coexistence of all these states and the switching between
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them in analogy to the model of globally coupled maps representing oscil-

lators as investigated by Kaneko(2). For special parameter regions Kaneko

has found chaotic itinerancy between high-dimensional and lower dimen-

sional states related to the coupling of different oscillators. Wiesenfeld

et.al.(3) have shown an analogy between laser modes and coupled oscil-

lators. In our system there exist approximately 10-20 competing modes

coupled via the inversion. Consequently, the effects studied by Kaneko

can be attributed to these modes. Finally, Kaneko has observed clustering

to different locked groups of oscillators for, respectively, lower nonlinear-

ity parameters of the single oscillators or stronger coupling. This could

be equivalent to the case of one single external resonator, where we have

observed many different periodic states.

In conclusion, we have studied an experimental system based on an exter-

nal cavity semiconductor laser that shows high-dimensional dynamics with

switching between various regular and chaotic states that are characteristic

for a delay-scenario. The switching might be induced by global coupling of

the different laser modes.
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Mode partition noise in optical fiber communication systems is still causing an error

rate floor even with distributed-feedback (DFB) lasers sources [1,2] having a side-mode

suppression ratio larger than 30 dB in stationary conditions. This phenomenon is caused

by the laser turning on initially in a side mode having a different wavelength from the

principal mode.

We limit our analysis to the case of a two mode laser. This is justified for nearly

single-mode DFB lasers, where only one side mode can have an appreciable probability

to be excited during the transient. The dynamics of the laser is modelled by using

noise driven rate equations for the density of minority carriers n and for the density of

photons in the main Im and side I, modes [3]. The aim of this work is to analyze the

evolution of Im and I, when the injected current is suddenly switched from a value Cb

below to a value C above the threshold current. The gain margin between the main

and side modes Ag and the laser operating point, given by C, are taken as parameters.

The statistics of the power partition between the two modes during the laser switch

on is analyzed in terms of the probability 4(Im) that the main mode intensity is Im

when the total intensity reaches a prescribed reference value IT. We take IT = Ist/2,

I', being the stationary value of the total photon density in the on state.
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Fig. 1.- 4(I../IT) vs Irn/IT for Ag = 4cm- 1 and C = 1.2Cth. Linear theory

(dotted line); approximation (solid line) and simulation (histogram)

In this way the carrier depletion due to stimulated emission can be neglected. An an-

alytic expression for the probability 4I(Im) has been obtained with the use of a linear

approximation [3]. We show by performing numerical simulations that this approxima-

tion is not accurate when the side mode is highly suppressed, Ag increasing and/or C

decreasing [3]. A new theory is developed taking into account the gain saturation for the

side mode due to the main mode. A better agreement is found between this theory and

numerical simulations, including the case of a highly suppressed side mode: Ag larger

than 4cm- 1 (7.5cm-1) and C = 1.2Cth (C = 1.5Cth), Cth being the threshold current

(see Fig.1). Using this approximation the probability of having a side mode larger than

the main mode during the leading edge of the optical pulse is obtained. This corre-

sponds to an integration of 4(Im) from 0 to IT12 and it is analogous to an error rate
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Fig. 2.- W2 /W 1 vs. Irn/IT for Ag = 7.5cm_1 and C = 1.5Cth.

in optical communication systems, wherein a threshold near one-half the received pulse

power is used to determine whether or not the received pulse is a mark or a space.

The probability density for the main and side mode intensities in the nonlinear

regime are also obtained from numerical simulations. The intensity is averaged over

different times to analyze the time evolution of both modes.

For highly suppressed side modes the averaged intensity is shown to be independent

of the integration time. In this case the evolution is mainly due to the spontaneous

emission noise. We have also studied in detail the events such that during the laser

switch on Im is smaller than IT/2. For these events a linear relation is found between

this value Im and the logarithm of the relation between the intensities of the side and

main modes both averaged over the first relaxation peak, W 2 /W1 (see Fig.2). Finally,

the total intensity averaged over the first relaxation peak is found to be constant.
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Summary

It is common for systems to evolve with time in a chaotic way. In practice, however,
it is often desired that chaos be avoided and/or that the system be optimized with
respect to some performance criterion. Given a system which behaves chaotically,
one approach might be to make some large (and possibly costly) alteration in the
system which completely changes its dynamics in such a way as to achieve the desired
objectives. Here we assume that this avenue is not available. Thus we address the
following question: Given a chaotic system, how can we obtain improved performance
and achieve a desired attracting time-periodic motion by making only small controlling
temporal perturbations in an accessible system parameter.

The key observation is that a chaotic attractor t pically has embedded densely
within it an infinite number of unstable periodic orbits [1]-[5]. In addition, chaotic
attractors can also sometimes contain unstable steady states (e.g., the Lorenz attractor
has such an embedded steady state). Since we wish to make only small controlling
perturbations to the system, we do not envision creating new orbits with very different
properties from the already existing orbits. Thus we seek to exploit the already existing
unstable periodic orbits and unstable steady states. Our approach is as follows: We
first determine some of the unstable low-period periodic orbits and unstable steady
states that are embedded in the chaotic attractor. We then examine these orbits
and choose one which yields improved system performance. Finally, we apply small
controls so as to stabilize this already existing orbit.

Some comments concerning this method are tln following:
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1. Before settling into the desired controlled orbit the trajectory experiences a
chaotic transient whose expected duration diverges as the maximum allowed size of
the control approaches zero.

2. Small noise can result in occasional bursts in which the orbit wanders far from
the controlled orbit.

3. Controlled chaotic systems offer an advantage in flexibility in that any one of a
number of different orbits can be stabilized by the small control, and the choice can be
switched from one to another depending on the current desired system performance.

For the sake of simplicity we consider a discrete time dynamical system,

Zi+ = F(Zi,p),1.1)

where Zi E Rn, p E R and F is sufficiently smooth in both variables. Here, p is con-
sidered a real parameter which is available for external adjustment but is restricted to
lie in some small interval, Ip - p/ < 6, around a nominal value p. We assume that the
nominal system (i.e., for p = p) contains a chaotic attractor. Our objective is to vary
the parameter p with time i in such a way that for almost all initial conditions in the
basin of the chaotic attractor, the dynamics of the system converge onto a desired time
periodic orbit contained in the attractor. The control strategy is the following. We
will find a stabilizing local feedback control law which is defined on a neighborhood of
the desired periodic orbit. This is done by considering the first order approximation of
the system at the chosen unstable periodic orbit. Here we assume that this approxi-
mation is stabilizable. Since stabilizability is a generic property of linear systems, this
assumption is quite reasonable. The ergodic nature of the chaotic dynamics ensures
that the state trajectory eventually enters into the neighborhood. Once inside, we
apply the stabilizing feedback control law in order to steer the trajectory towards the
desired orbit.

For simplicity we shall describe the method as applied to the stabilization of fixed
points (i.e., period one orbits) of the map F. The consideration of periodic orbits
of period larger than one is straightforward and is discussed in Sec. II.E. Let Z.(p)
denote an unstable fixed point on the attractor. For values of p close to P and in the
neighborhood of the fixed point Z.(p) the map (2.1) can be approximated by the linear
map

Zi+i - Z.(P) = A(Z, - Z.(p)) + B(p- p), (1.2)

where
A = DzF(Z,p),

B = D F(Z,p),

(AZ)i = Z, - Z.,

(Ap =pi - P.

Generically, (A, B) pair is controllable, and hence we may find a linear feedback control
law,

(AA) = K(AZ),



112 / TuA1-3

such that the spectrum of (A + BK) is in the open unit disc. Furthermore, this control
law stabilizes the nonlinear system (1.1) in a neighborhood of the nominal operating
point as well.

Although we describe the details only in the case of discrete time systems, this
method is applicable in the continuous time case as well by considering the discrete
time system obtained from the induced dynamics on a Poincar6 section.

In order to illustrate the method we applied it to a periodically forced mechnical
system (the kicked double rotor), which results in a four dimensional map. Amongst
the examples considered, we studied cases where the unstable orbit of the uncontrolled
system has two unstable eigenvalues and two stable eigenvalues, and the stabilization
is achieved by variation of one control parameter characterizing the strength of the
periodic forcing. The present work generalizes our previous work [6] to the case of
higher dimensional systems and also includes new material illustrating the effect of the
choice of stabilization on the length of the chaotic transient experienced by the orbit
before control is achieved. Other relevant references on the stabilization of periodic or
steady orbits embedded in chaotic attractors are the experiments of Ditto et al. [7],
Singer et al. [8], Azevedo and Rezende [9], Roy et al. [10], and the paper of Fowler
[11].
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The stabilization of unstable periodic orbits embedded in a chaotic

attractor has received great attention recently. In the original algorithm

proposed by Ott, Grebogi and Yorke [1] (OGY) control is achieved by means

of small perturbations of a system parameter which are proportional to

the deviation of the system from the unstable fixed point. A related but
different technique to control a chaotic system is the occasional
proportional feedback technique (OPF) [2]. Experiments demonstrating the

control of chaos in a multimode solid state laser using this technique have

been reported recently [3]. Here we study the theoretical model for such

laser and compare with the experimental results.

The system considered is a multimode diode pumped solid state Nd:YAG

laser with a frequency doubling KTP crystal. In multimode operation, each

longitudinal mode can only exist in two orthogonal polarization directions.
The rate equations for the intensities Ik and gains Gk of each mode are

given by the equations [4]:

",cd kk -(Gk- xk-1gk- 2e., Pjk Ij) Ik
dt j~k

Tf dGk 'Y- (1 + Ik + IJ)Gkd t j~k
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where cc is the cavity round trip (0.2 ns), rf is the fluorescence lifetime of
the Nd3+ ion (240 I±s), ak is the cavity loss parameter for the kth mode, ,
is the small signal gain, which is related to the pump rate, 03 is the cross-

saturation parameter, and g is a geometrical factor dependent on the
birefringence of the YAG and the KTP crystals (its value depends on the
phase delays and on the angle between the YAG and KTP fast axes). For
modes j having the same polarization as the kth mode, 4jk = g, while jk=

(1-g) for modes having orthogonal polarization. The nonlinear coefficient
F is associated with the conversion efficiency of the fundamental

intensity into doubled intensity by the KTP crystal. We assume very
similar losses for all the modes with ak=0.01. Chaotic behavior arises as

a consequence of the global coupling between the longitudinal modes
through the nonlinear process of sum frequency generation.

The OPF procedure to stabilize the system in the chaotic regime is applied
as follows. As in the experiments, the total laser output intensity is
sampled at a given frequency vc. Then, during a short time ton << tc=vc- 1, ,
is modified to y=yo + w(I-Ir) where yo is the ambient value for the pumping,

Ir is a given reference value for the total intensity and w is a small
proportionality constant. After ton, and until the next sampling time,
y=•-o. The value of vc is related to the oscillation relaxation frequency.
We have observed the stabilization of unstable periodic orbits by means of
the applied control signal when the parameters tc, ton, w and Ir are

appropriately chosen. We have studied the range of parameters which
yield stabilization. The value of tc is related to the oscillation relaxation

period. In some circumstances control can be achieved for many different
values of tc. Preliminary results show that ton has to be chosen much
smaller than tc. w is taken around 0.05 (corresponding to modification of
the ambient pump rate y by a few percent, and Ir is chosen to be close to

the maximum or minimum values of the intensity. A crucial issue in the
stabilization procedure is that it only works when system is placed
initially close to the unstable orbit to which will be stabilized. We have

studied numerically the size of the region around the unstable orbit where
the OPF technique works, which is important from a practical point of
view.
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In conclusion, we have analyzed numerically the control of a multimode

solid state laser using the OPF technique. The characterization of the
range of parameters which can stabilize the system is of fundamental
importance for the practical applicability of this technique.
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Summary

The exploitation of chaotic and nonlinear dynamical phenomena for practical

applications has recently been transformed from concept to reality. Two major approaches to

achieving control of chaotic systems have been developed. Hubler and his coworkers have

studied control algorithms for driven nonlinear systems where the time dependence of the

driving forces necessary to to obtain resonant stimulation are computed from Poincare maps of

the system or from detailed mathematical models.1 A different approach was initiated by Ott

Grebogi and Yorke (OGY) ; they suggested that a chaotic attractor typically has many unstable

periodic orbits associated with it, that could be stabilized by appropriate modifications to a

system parameter.2 Their approach was experimentally demonstrated by Ditto, Rauseo and

Spano in their experiments on a magnetoelastic ribbon. 3

We report here the results of experiments that demonstrate dynamical control of chaotic

intensity fluctuations in a chaotic, intracavity doubled, multimode Nd:YAG laser. It is an

autonomously chaotic, higher dimensional system, which we have studied both experimentally

and theoretically over the past few years.4-7 The laser modes (typically from three to ten in

number) and their associated gains may be described by a set of coupled, nonlinear ordinary
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differential equations. Relaxation oscillations occur in the total intensity output of the laser,

resulting from an exchange of energy between the light and active atoms of the laser medium.

The potassium titanyl phosphate (KTP) frequency doubling crystal introduces a nonlinear loss

for the fundamental frequency (1.06 g) and also couples the different longitudinal modes

through sum frequency generation. In the method of control used in these experiments, it was

not necessary for us to utilize a detailed model for the laser system. Comparisons with the

theoretical model are made in an accompanying paper.

In a periodically driven system, such as the magnetoelastic ribbon of ref. 3, it is natural

to sample a system variable at the driving frequency or its sub-multiples. In the laser system,

the relaxation oscillations provide a natural time scale for sampling and feedback to a system

parameter. The relaxation oscillations occur in the range of frequencies upto 120 kHz for

excitations as large as five times above threshold. A system variable (the total laser intensity in

this case) is sampled within a window of selected offset and width. The sampling frequency is

chosen to be close to the relaxation oscillation frequency or a rational fraction of it. A signal

proportional to the deviation of the sampled intensity from the center of the window is

generated and applied to perturb a system parameter from its ambient value. This control signal

attempts repeatedly to bring the system closer to a periodic unstable orbit that is embedded in

the chaotic attractor. When successful, this dynamical control technique can stabilize the laser

output intensity in one of many simple and complex periodic waveforms.

We have been able to control the chaotic intensity fluctuations of the laser system

through this method of occasional proportional feedback. These results demonstrate dynamical

control of an autonomously chaotic, higher dimensional system for the first time on

microsecond time scales. The multimode laser system studied by us is an example of a

globally coupled system of nonlinear oscillators. The proportional control signal applied to the

pump excitation results in an ordered, periodic state of the originally chaotic ensemble of
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oscillators. The results reported here indicate that this technique should be widely applicable to

a variety of physical, chemical and biological systems, including arrays and networks of

coupled nonlinear elements.
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Control and characterization of unstable
stationary states

S. BIELAWSKI, M. BOUAZAOUI, D. DEROZIER and P. GLORIEUX
Laboratoire de Spectroscopie Hertzienne, associ6 au C.N.R.S.

Universitd des Sciences et Techniques de Lille Flandres-Artois
F-59655 Villeneuve d'Ascq Cedex (France)

The Nd-doped optical fiber laser (OFL) displays spontaneous
oscillations when the pump power exceeds some threshold(l). This will
be called hereafter the "second Hopf bifurcation" threshold of the laser
since the first Hopf bifurcation corresponds to the onset of laser action.

The present paper reports on the active stabilization of the
unstable stationary state that appear following this bifurcation. As
shown on figure 1, when the pump power exceeds some threshold (5.8
mW in the conditions of Figure 1), the laser intensity becomes unstable.
These spontaneous instabilities start from periodic oscillations and lead
to chaos through a period-doubling cascade(l).

Our aim is to suppress these oscillations in order to stabilize the
output laser intensity. To reach this goal, we made use of an external
feedback method. The laser intensity is detected by a photodetector.
The signal output detector is passed through an electronic derivator
and sent to the pump laser diode. As a consequence, we force the
oscillator to react in the opposite phase with its own oscillations. Figure
2 shows the transition from the spontaneous oscillatory behavior in the
absence of the external feedback, to the stabilized steady-state when
the control feedback is activated. In this respect, it is worth noticing
that in spite of his weakness (limited to 5% of the average pump
power) and of the strong oscillations the control becomes effective in a
relatively short time after his application. This control strongly affects
the qualitative behavior of the system. The dependence of the output
laser intensity on the pump power is reported on figure 1. It shows
that the laser is stabilized above the second threshold (Pth = 5.8 mW),
in a state which has the same properties (e.g., dependence on the pump



120 / TuA4-2

power) as the previously stable state. We can therefore consider that
we have detected and measured the unstable state emerging at the
second Hopf bifurcation.

This method of control may also used to characterize this
unstable state through the analysis of the relaxation oscillations.
Between the two thresholds, the stationary state is stable and a small
perturbation of the pump power is followed by damped relaxations. On
the other hand, above the second threshold the unstable stationary
state is stabilized by the control feedback and when it is desactivated
the relaxation oscillations exponentially increases. Figure 3 shows that
the square of the oscillation frequencies vanishes at the first
bifurcation and increases linearly with the pump power, as predicted
by a simple rate equation model of the two level laser(2 ,3), whereas the
damping rate (figure 4) changes of sign at the second Hopf bifurcation
(5.8 mW).

In conclusion, we have demonstrated experimentally that a
simple external feedback system can be used to suppress the
oscillatory behavior and chaos in an optical fiber laser (OFL). The laser
is locked to the (unstable) state which destabilized at the bifurcation.
The dynamical properties of this state can be studied using the same
technique.

1 - S. BIELAWSKI, M. BOUAZAOUI, D. DEROZIER and P. GLORIEUX (to be
published).
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CONTROLLING LASER CHAOS

S. Bielawski, M. Bouazzaoui, D. Derozier and P. Glorieux
Laboratoire de Spectroscopie Hertzienne, associ6 au C.N.R.S.

Universit6 des Sciences et Techniques de Lille
F-59655 Villeneuve d'Ascq Cedex (France)

In 1990 Ott, Grebogi and Yorke described an attractive method
(OGY) whereby small time-dependent perturbation applied to a chaotic
system allowed to stabilize unstable periodic orbits[l]. This method is
applicable to experimental situations in which a priori analytical
knowledge of the system is not available[2,3]. Their method assumes the
dynamics of the system can be represented as arising from a nonlinear
map (e.g., a return map). The iterates are then given by Xn+I=F(Xn,p),
where p is some accessible parameter of the system. To control chaotic
dynamics one only needs to learn the local dynamics around the desired
unstable periodic orbit (e.g., a fixed point Xn=XF) on the nonlinear map :
especially, the derivatives with respect to p of the orbit location. When
the motion is near the periodic orbit(Xn#XF), small appropriate temporal
perturbations of the control parameter p allow to hold the motion on its
unstable periodic orbits.

The control method which is presented here is based on the same

approach but it does not need the analysis of the local dynamics and
allows to detect, then to stabilize, the periodic orbits embedded in the
chaotic motion. Moreover it allows to follow the unstable periodic orbits
when the control parameters of the system are slowly changed. The
control idea is to monitor the Xn' values until IX2n+1-X2ni becomes
smaller than a fixed value; in this case, one have detected a candidate
for an unstable orbit. Then, one applies a small temporal perturbation
Sp, on the control parameter p, proportional to the difference cX(X2n+l-
X2n); a is adapted to minimize the following differences. When one has
detected an unstable periodic orbit, the temporal perturbation decreases
(its average value tends to zero) and the Xn' values tend to a fixed value
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XF corresponding to that determined by the OGY method. Unlike the OGY

method, the period of the correction is necessarily double because the
fixed value is not beforehand determined (it results of the stability

analysis) and so, very unstable orbits are more difficult to stabilize; on
the other hand, this method has the advantage, in addition to its

simplicity, to stabilize the periodic orbit even when the control
parameters slowly change.

Using this methode, we have achieved control of chaos in a Nd 3 +

doped fiber laser pumped by a laser diode[4]. In some experimental

conditions and above a threshold value of the pump power, the laser
intensity spontaneously oscillates and a period doubling cascade leading

to chaos is observed[5]. The evolution of the laser dynamics versus the

pump power is summarized in the bifurcation diagram(BD) of figure 1-a.

PUMP POWER (mW)

Figure I Bifurcation Diagram of the optical fiber laser. The control

parameter is the pump power. (a) without control and (b) with
stabilization on the 2-T periodic orbit.

(the dash line represents the unstable orbit).
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The BD is obtained using periodic sampling of the laser output intensity
synchronously with the spontaneous oscillations. Figure 1-b shows the
same BD as the figure 1-a when the system is switched to control the
unstable period-2 orbit using small temporal perturbations of the pump
power(control parameter) : the full line represents the stable periodic
orbit and the dash line shows the unstable 2T-periodic orbit stabilized
all over the rangr on which the control parameter is slowly changed.
Figure 2 displayss the evolution of the Xn' values when the control
system is switched on. We clearly observes that the system waits until
the attractor reaches the vicinity of the 2-T periodic orbit and then
stabilizes it. Similar stabilizations are obtained on higher order unstable
orbits.

a)
ON

OFF

b)

-XF

TIME ( 10 ms/div)

Figure 2 : Times series of Xn' (b) when the control system is switched on
(a) to control the period-2 unstable orbit.

In conclusion, we have demonstrated the control of chaos in a
physical system using an method analogous to the OGY one. Some
advantages of this method are the possibilities to detect the periodic
orbits and to follow it when the physical system is modified.
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On the Deterministic Dynamics of Stimulated Scattering Phenomenon

R.G. Harrison, Weiping Lu and A. Johnstone, D.S. Lim and J.S. Uppal

Department of Physics, Heriot-Watt University, Edinburgh EH14 4AS, U.K.
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Fax. 031-451-3136

Lu and Harrison have recently shown [1] in a more complete treatment of stimulated

scattering that the interplay of nonlinear refraction with the gain of stimulated scattering lead

to rich dynamical instabilities and chaos in the scattered and pump fields; omissions of dispersive

effects as in conventional treatments resulting in stable emission only. Such behaviour is shown

to be prevalent over broad experimentally accessible operating conditions, in some instances

from the onset of stimulated scattering.

In the light of recent well defined cw experiments on SBS, in optical fibre, confirming

rich aperiodic behaviour in the emission [2,3] the relative roles of nonlinear dispersion and noise

in determining this behaviour is an outstanding issue of some importance. In this report

clarification of the role of nonlinear refraction is unambiguously established by considering

stimulated scattering in the presence of external feedback. Our experimental findings, so far

for SBS, in single mode optical fibre show with the inclusion of cavity feedback (pumped at

514 nm) a dramatic modification of the dynamics to sustained and bursting modes of

quasi-periodic behaviour. These distinct features provide an excellent basis for quantitative

tests of our mathematical description. No evidence is found for sustained stable emission. Our

results are shown to be in good quantitative accord with the predictions of our generalised

treatment and indicate that spontaneous noise has little or no influence on the deterministic

behaviour for this system. Representative data of the SBS emission in a 40 m long fibre

(experimental and theory) showing the form and trend of the dynamical features on increasing

the pump power from close to threshold to - 3 times above are shown in Fig. 1, feedback of

- 4% being provided by the natural reflectivity of the fibre. Similar features are also obtained

for constant pump intensities on varying the feedback (investigated over the range of 1-10%),

bursting features prevailing for higher reflectivities. The numerical simulations are based on
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physical parameters for silica fibre at 514 nm (gain = 2.6 x 10"11 m/W, a = 4.6 x 10-3 m71,

SVB = 143 MHz, Aff = 14 gim2, n2 = 2 x 10"2 m2/v2 (electronic). On a contracted time scale

(typically 2! 1 ms) these features show intermittent type behaviour evolving from sustained to

bursting emission, the variable separation of which progressively increases with pump power

towards eventual quasi cw emission.

Our theoretical and experimental analysis of the dynamical behaviour, through time series,

power spectra and phase portraits, establish periodic, quasiperiodic and underlying weak chaotic

features. These results, along with current measurements on a longer time scale of the

intermittency behaviour, will be presented.

The physical mechanism of nonlinear refraction in promoting the rich dynamics we

observe is explained through its induced effect of dynamic phase mismatching between the

pump and Stokes waves, details of which will also be discussed.

Towards assessing the role of noise on the dynamics, the inclusion of spontaneous

scattering to our model descriptions is currently in progress. Results will be reported for

stimulated scattering with and without cavity feedback.
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Cascaded stinulated Brillouin scattering in high-finesse all-fibre ring resonators

Dieter Garus (member, IEEE), Ralf Hereth
Lehrstuhl fir Allgemeine Elektrotechnik und Elektrooptik, Ruhr-Universitit Bochum
Universititsstr. 150, 4630 Bochum, Germany, phone: 49/234/700-2491

One of the most dominant nonlinear effects in single-mode fibers is stimulated Brillouin scattering
(SBS). The generation of SBS in a ring resonator can be considered as a lasing action, with the
Stokes output downshifted in frequency by an amount equal to the Brillouin frequency. In the
stationary case stimulated Brillouin scattering in a length of optical fiber can be described by the
following partial differential equations for the slowly varying complex amplitudes of the pump waveE.
and the backscattered first order Stokes wave E,,, with the wave amplitudes E, related to the
intensities I by I,=IEI 2 (i=pJB1) [11]:

.3E 1 '-'

(1)
aEB,- I• =%

directional

E. I cp 3 In a ring resonator geometry as depicted in Fig. 1 the
I4 wave amplitudes at the ports of the directional coupler

1 1 Iobey the relations [21

Ee(L) Eel(o0) E,() = Vk(-jKE.+TE,(L)),

(! :c EB1 (L) = VkTED,(O)I (2)

Fig. 1: Ring resonator geometry

where Y is the coupler intensity radiation loss, K is the field coupling coefficient, and T is the
field transmission coefficient.

The above equations are only valid for limited pump powers, that means the intensity of the
backscattered Stokes light at the frequency w.-w. is low enough so that it cannot excite forward
Brillouin scattering at w,-2w,,. If higher order Brillouin scattering has to be considered, the
differential equations must be changed adequately. If e. g. second order forward scattering, E.2, is
taken into account, the differential equations describing the spatial development of pump, backward
Stokes and forward Stokes wave amplitudes in the stationary case have the form

aE,1  I -- 01 B) (3)

ax 2

aEr= 1
aE2 I- (-9s &)EP2
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where the physical meaning of the terms on the right hand side is obvious. If the total Brillouin gain
over one loop transit is small, a direct integration of these differential equations yields the following
relations for the wave amplitudes at the coupler ports inside the resonator loop:

E,,(O) = rzL gL (O).+85LIL) (4)
5j/ -'~ 2 2 PJ 2 P2~J

EPAL) = Ep,2(O)ex -( L + LA-4(W))

An additional equation is obtained from the boundary conditions at the directional coupler, which
gives

En(O) = VkTE,2(L). (5)

Stimulated Brillouin scattering can be described completely by a set of (4N+2) equations,
if N scattered waves in forward and backward direction are considered, respectively. E,(,+,) denotes
the wave amplitude of backscattered Stokes radiation, having a frequency of ca- ( + 1)(a, whereasE
denotes Stokes radiation in forward direction having the frequency (Op- P WB .

The lowest pump threshold, i. e. the threshold for first order backscattering, can be
calculated from Equations (2) and (4) as

2A 2-TVkexp(--) (6)
gL2K2 vkT

It is possible to derive general expressions for the pump thresholds of backward and forward
scattering, respectively. The results are

N-I (7)

P*,9N-I) (yk7 -(U2) +(1 -- !-)F (Vk) -2hiIP ~ 7

for the pump threshold of the (2N-1)'th order backscattered Stokes wave and

pA^,2h) = (t (Vt7)-m-2)) (t (VkT) -VpIp, (8)

for the pump threshold of the (2N)'th order forward scattered wave. In the case of negligible fibre
and coupler losses, i. e. V,=I and a/cl, and almost critical coupling of the resonator, i. e.
T=Vke L the pump thresholds can be approximated by

P'h-B(2N-1) = N 3Pa,.l (9)

and

P*,2M = N(N+I1)2 Pt", (10)
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If the pump power P. is in the range P,,,,<P,<P•, the backscattered Stokes power can be
calculated from the set of Equations (2) and (4), which yields the result

2A aLL[ ] (
P - - 1- P -exp.

If the pump power is in the range P4X5 w4 1 )<P,<P4,M. 2), then the backscattered Stokes power at the
frequency a,-(2i+l)•,, I=l...N, is

S: (v7) 2 p p ,Wkp)- 2A exkp- -) E (Vj)ý 5  (12)

Pump Directional Direeflonal The experimental configuration is shown in Fig.
laser Coupler DC2 Coupler DC1 2. The fibre ring resonator, having a finesse

F=145, is made of 100 m of non-polarization-
MotrPower maintaining single-mode fibre with a dampingMeter

coefficient a =0.38dB/kin, a core diameter
Resonator d= 10pri and a core refractive index n =1.46.

Power Power The directional coupler DC1 has an intensity
Meter Meter coupling coefficient K2 =2.7% and a coupler loss

Fig. 2: Experimental setup v~ =0.035dB. The pump source is a 1319-nm

NdYag-laser with a maximum output power of 2 mW. The backscattered Stokes power measured as
a function of the pump power coupled into the resonator is depicted in Fig. 3. The pump threshold
for the onset of first order Brillouin backscattering was determined as P,,,, = 40 p W. The good
agreement between experiment and theory is shown in Fig. 4 where the output Stokes power was
calculated by (12), with the resonator parameters given above.

180

P P B
B + pw

• ++• +

/ 20
,00 Boo 100 P /Ww 800

Fig. 3: Measured Stokes power Fig. 4: Calculated Stokes output
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Hamiltonian Dynamics of Parametric Nonlinear Wave Mixing

S. Trillo, and S. Wabnitz

Fondazione Ugo Bordoni, Via B. Castiglione 59, 0014,2 Rome, Italy

Exact solutions in terms of elliptic integrals to the problem of mixing between a
wave and its second-harmonic in a medium with quadratic and/or cubic nonlinearity
have been reported in the nonlinear optics literature since the early sixties [1-41. These
solutions involve rather cumbersome expressions which do not lead to an immediate
insight into the physics of the conversion process.

In this work we introduce a reduced geometrical representation of parametric mix-
ing processes, which is based on the Hamiltonian formalism of nonlinear dynamical
systems. The coupling between the complex wave amplitudes is represented by the
motion of a point on a given trajectory in the phase plane [2]. The present approach
permits to discover the nonlinear eigenmodes of the mixing process and to study their
spatial stability. The visualization of the dynamics of the wave coupling process in the
phase plane also allows for a powerful immediate physical insight. For example, the
phase dependenc of the conversion efficiency in the case of seeded second harmonic
generation or frequency division is simply explained. Our description also reveals the
existence of spatially chaotic regimes for wave propagation in nonuniform media, e.g.,
in the presence of the periodic variations of the linear or nonlinear properties which are
exploited by the quasi-phase matching techniques [51.

Let us briefly outline here the basic steps of our reduction procedure. The equations
for the complex fields a, = V2AW, and (2 = A2, which propagate in a isotropic medium
with quadratic and cubic nonlinearity (e.g., an optical fiber), read

- -al --•a; + x(ý I a, 1 +2 1 a2 I•)al
- " a2  +r0 + 2+ 2 x( a, + I a2 J')a2,
A 2  122

Here X is the ratio between cubic and quadratic nonlinear susceptibilites, x is the linear
mismatch, and t = RPz, where P =1 al 12 + I a2 12 /2 is the conserved flux and R is
coefficient which is proportional to the second order susceptibility. Equations (1) can
be written in the Hamiltonian form

Oai .9H
S7t t (2)

where the Hamiltonian reads

H = An I a2 12 +• I 1a I" +X Ia, I" +2x I aa 121 0 1(42 +(a2 + c.c.). (3)

Equations (1-3) can be reduced to the following one-degree-of-freedom nonlinear

oscillator in the conjugate variables

I a21217 (4)
0 2.01 - 452,
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where al -I aj I cxp{ij},J = 1,2. The above variables obey

where the dot denotes derivation with respect to C, and the reduced Hamiltonian .H

reads

f(, 0) = 2VW¶(I - n) wos(O) + (2y - Ax)7 - 2X.,, (6)

Changing from polar to the cartesian coordinates u = x/-cos 0, and v = ,/- sin4 , this
Hamiltonian is

t = 2(u' + v2 )u + 2u + (2X - Ax)(u 2 ) - 2x(• 2 + v2) 2 = He + Hd (7)

where Hc = 2(u 2 + v2)u, and HI is the Hamiltonian of the time-averaged nonlinear
Duffing oscillator.

The advantage of the reduced description (eqs.(5-7)) is that one may obtain an
immediate physical insight into the conversion process, by a simple visual inspection
of the H = constant curves in the phase plane. The geometry of the phase plane is
determined by the number and the stability properties of the nonlinear eigenmodes (i.e.,
the linear superpositions of the two waves which propagate unchanged). Bifurcations
and consequent changes of stability of the eigenmodes occur as one parameter (i.e.,
the mismatch n) is varied. Fig.1 shows the bifurcation diagram in the simplest case
where the third-order contribution is negligible (i.e., X = 0). More complex bifurcation
diagrams occur in the general case.

Fig.2 contrasts the trajectories which are followed by the point (,7, 0) (i.e., the
constant A curves) in a phase mismatched (a) and matched (b) case, respectively. As
can be seen, in the last case the circle of fixed points with t7= 1 is an unstable saddle.

This saddle point instability may lead, in the presence of small longitudinal vari-
ations of the linear refractive index or the nonlinear susceptibility, to spatially chaotic
behavior in frequency conversion process (see fig.3). We demonstrate analytically the
existence of homoclinic chaos in the second harmonic generation by means of the Mel-
nikov analysis [6].

This work was carried out under the agreement between Fondazione Ugo Bordoni
and th Istituto Superiore Poste e Telecomunieazioni.
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In the past few years, several authors have reported observations of chaotic behavior

in various photorefractive phase conjugators which involve some form of external feedback,

either by way of mirrors or reflections from the crystal faces (1]. We have recently observed

such behavior, for the first time to our knowledge, in an externally pumped phase conjugate

mirror with no such feedback mechanisms. The origin of chaotic behavior in such a system

is fundamentally different from that in either of the former two cases. In the case of

the phase conjugate resonator, the chaos apparently arises from a competition between

different cavity modes, and in the self-pumped phase conjugator from competition between

different photorefractive gratings with different time scales, while in the present case where

all the beams are externally supplied, the chaotic behavior is the result of time-dependent

phase transfer among the four beams [2]. For the particular set of parameters (coupling

constant, geometrical factors, etc.) used in our experiments, theory [3] predicts that such

unstable behavior will not occur in ordinary photorefractive four-wave mixing. It wvill be

shown, however, that the observed chaotic oscillations in the phase conjugate intensity
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are the result of enhanced gain which can occur when one of the pumping beams deviates

slightly from the Bragg angle for the photorefractive phase gr'.,g (off-Bragg four-wave

mixing, or OBFWM)[4].

Using analytical techniques of nonlinear dynamics, we calculated both the fractal

dimension of the phase space trajectory extracted from the experimental time series of the

phlase conjugate intensity and the number of degrees of freedom (dynamical diiimclsions)

of the system, and found these to have values of 5.7 and 13, respectively. Thei standard

scalar theory of photorefractive four-wave mixing [3] predicts a fractal dimension of 2.4 and

the number of dynamical dimensions 5, which are both considerably smaller than those

determined in our experiment. Hence it would seem that the scalar coupled wave equations

do not provide a correct picture of the dynamics as they occurred in the experiment. These

equations comprise four spatial first-order partial differential equations and a fifth first-

order PDE which gives the temporal evolution of the refractive index grating. Since they

are partial differential equations, they comprise an infinite-dimensional system. Farmer

[5] has shown, however, that the dynamics of such an infinite-dimensional system can be

represented in a. finite-dimensional phlfase space, the number of diniensions of which arc

the dynamical dimensions, or the number of degrees of freedom of the system. Coniparing

this number obtained from the embedding procedure applied to the scalar theory with the

number of PDE's in this theory, we see that they are equal. This correspondence implies

that since there are 13 degrees of freedom present in the experimental systeimi, the system

should therefore be described by 13 first-order partial differential equations. If the corpled

wave equations are derived directly from Maxwell's equations for radiation polarized in
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the plane of incidence of the beams (see reference [6]), it is found that there are in fact

13 first-order PDE's, 12 of which give the spatial dependence of the electric and magnetic

field components of the four beams, and one of which describes the time evolution of the

refractive index grating. It is shown in [6] that the vectorial nature of the electromagnetic

field plays a vital role in the operation of the double phase conjugate mirror, and so it is not

surprising that it would also figure prominently in the dynamics of other photorefractive

wave mixing configurations.
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Self and mutual phase conjugation via thin layers.

B. Ya. Zel'dovich, I. V. Goosev, V. A. Krivoschekov.

Technical University, 76 Lenin av.. Chelyabinsk,

454080 Russia. Phone (007-3512)-399140

Consider a nonlinear optical layer with small thickness

L, i.e. with L<< A/ e2, where 6 is the angle between interac-

ting waves. If the nonlinearity is of the phase type, the

action of the layer on the transmitted beam is the phase

modulation only:

Etr, Mcx,y) = Eic(X'y)exp(ih(x'y)) (1)

where 9(xy) is connected with the nonlinear action of the in-

tensity distribution of the field, 9=sIEI2. However, the phase

modulation produces no extra intensity modulation, and there-

fore there is no feedback in a thin layer even for a large

(191 >>1) nonlinearity. This is a strong drawback for such im-

portant media as semiconductor quantum wells, for which L<lpim,

or liquid crystal cells.

The phase modulation 9(x) = g cos(qx) of an incident beam

A exp(ikXx) results in appearence of diffracted beams:
ikxx*-q1

At,,..C(x) = A e /X [1 + 0. 5ige'qx + 0. Sige-qx + ... (2)

Interference of the +1-st diffraction order with zeroth one

virtually gives intensity modulation 81(x)=-IAI 2g sin(qx), but

it is identically compensated by interference 8I(x) =

+IAI2g sin(qx) of zeroth and (-1)-st diffraction orders.



TuB5-2 / 139

The main idea of this work is to produce by some method

the change in the relative amplitudes or phases of these two

contributions. Among those methods are: 1) propagation of the

wave at some distance z, which results in relative phase shift

Cv/k2-(:k +iq)2~ _Ick2-(k-q)-2 )z, 2) imaging of the out-

put of the layer by a lens with total elimination of (-1)-st

diffraction order, like for Foucault knife, 3) the same as in

2), but with introduction extra 1800 phase shift into (-1)-st

order, like for Zernike phase-contrast microscope.

In particular, consider the system of two thin nonlinear

layers, illuminated by the beams A and B respectively, and a

lens which makes sharp imaging of the illuminated parts of

layers to each other, see Figure. Suppose that some grating

g1 appeared in the 1-st layer which diffracts the wave A as

the +1-st order into the wave which is phase conjugate to B.
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Interference of A+, and A0 may produce, by cross phase modu-

lation, the grating g2 in the second layer, which will dif-

fract the wave B into A". The interference of BA1 and B. in

the 1-st layer will produce the feedback for original grating

g1. Our calculations show that the threshold condition of such

mutual conjugation of (generally incoherent to each other)

beams A and B is

TIT2 s12IAi2 s21 BI2 < -1 C3)

where (p=s,1lE12 is the cross phase modulation, T, is inten-

sity transmission coefficient of the i-th layer. It is impor-

tant that the aperture with two holes transmits the beams A0.

A+11 B0, B+1 only and blocks negative diffraction orders.

Experiments were done with nematic liquid crystal cells

with thermal nonlinearity which allowed to get s12 > 0 for

ordinary wave and s2( < 0 for extraordinary wave. We hope to

discuss also nonlinear dynamics of the system, a lot of

variations of set-up geometry and different types of media.
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Applications of Fiber Optic Interferometry in Nonlinear Dynamics

S.T. Vohra and F. Bucholtz
Naval Research Laboratory, Code 6570

Washington DC 20375-5000
Telephone: (202)-767-9349

The ultimate performance of a fiber optic (FO) interferometer depends on its ability to
resolve small differential optical phase shifts. Due to advances in FO technology it has become
possible to fabricate interferometers with optical phase resolution of < 1 grad/4Hz (f > 100 Hz)
[1]. Such FO interferometers have been successfully utilized in making extremely high
resolution acoustic and electromagnetic field sensors [1]. Since the optical phase shift in the
fiber is directly proportional to the induced strain in the material bonded to the optical fiber the
FO interferometer is also well suited for studying the dynamic strain response of
magnetostrictive, piezoelectric and electrostrictive materials [2].

A low noise, high resolution (strain resolution < 10"12/'lHz for f > 1 kHz) fiber optic
interferometer is used for the first time to observe several routes to chaos in the nonlinear strain
dynamics of piezoelectric (lead zirconate titanate - PZT) and magnetostrictive (Fe78B13S9 -
Metglas 2605S-2) materials. The nonlinear time series obtained from the FO interferometer
output is used to generate power spectra, display Poincare sections, perform dimension
calculations and compute Lyapunov exponents. It is the computation of the Lypunov exponents
which especially requires a low noise time series [3). The experiment has also been utilized to
verify various 'universal' models of nonlinear dynamics [4,5]. Due to low noise in the
experiment the FO interferometer is particularly well suited in characterizing the effects of noise
on dynamical instabilities since noise can be added to the system in a controlled manner.

A Mach-Zehnder fiber optic interferometer [1] used to measure the nonlinear strain
dynamics of various materials is depicted in Figure 1. A small portion of the nonlinear material
is bonded to the optical fiber comprising one arm of the interferometer. The phase shift of light
propagating in the fiber attached to the material is a direct measure of the induced strain in the
material. The output from the optical detectors is monitored with a dynamic signal analyzer for
real time power spectral analysis and is also digitized with a LeCroy high speed (12 bit) digitizer
for generating and storing time series.

Detector 2

Diode Laser Coupler

•.H field g Detector I

Nonlinear Single mode fiber
Materialve

acDriv + •pectrum i•

ac Analyzer

LeCroy
Diaitizer

Figure I A schematic of the fiber optic interferometer used to measure the nonlinear strain dynamics of materials.
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Nonlinear strain response of magnetostrictive and piezoelectric materials, monitored with a
FO interferometer, showed several routes to chaos including period doubling cascades,
quasiperiodicity, phase locking and intermittency. A typical nonlinear strain response of a driven
magnetostrictive ribbon is shown in Figure 2. A 4" long, vertically held unannealed Metglas
ribbon which was clamped at the top end and driven at frequency f = 8.5 kHz with hac = 0.5
GausSrms and Hdc = 2 Gauss showed a bifurcation at half the drive frequency (period doubling)
coexisting with another bifurcation whose frequency was incommensurate with the drive. Figure
2 shows the power spectra of the interferometer output which depicts the drive frequency (f), the
period doubled frequency (f/2) and a frequency incommensurate with the drive (f ). Phase space
reconstruction of the experimental time series (60 points per period) by the delay coordinate
embedding technique showed a two torus as expected (Figure 2b). The corresponding Poincare
section depicted in Figure 2c displayed two circles (due to a two torus). Two torus bifurcations
have been predicted by Kaneko [6] from studies on coupled logistic maps but have not been
experimentally verified. Further changes in drive parameters showed various other bifurcations
followed by chaos.

-30 f x(t + 3)
(a) f/2

4..
S50 fq

ol' -90___

-110
- 0 2 4 6 8 10

O Frequency (kHz) "

Figure 2 (a) Power spectra (b) 3 dimensional phase
space reconstruction (c) Poincare section of the strain
response of Metglas driven at f = 8.5 kHz.

x(t)

The power spectra (Fig. 2) shows the low noise, large dynamic range of the system which
makes it well suited in the computation of Lyapunov exponents from experimental time series.
Figure 3 depicts a Poincare section generated from a chaotic time series output of a
magnetostrictive ribbon. The data was taken for an ac drive amplitude of 0.753 Gauss and a DC
bias of 1.5 Gauss at f = 7.68 kHz. The computed Hausdorff dimension of the attractor shown in
Figure 3 was approximately 2.1. Table 1 shows the calculated Lyapunov exponents X1, X2' X3

for local dimension 3 and increasing order of mapping from 2 to 4 [71. The reliable computation
of all the Lyapunov exponents (including the negative ones) from experimental system requires
such a low noise time series.
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N y 1  X2  X3  rror

"2 -0.01 -0.12 -0.68 0.32

S/**3 0.11 -0.07 -0.65 0.20

"4 0.14 -0.07 -0.63 0.14

Table I
Figure 3

The experiment has also been utilized to verify the universality of noise rise in parametric
devices. The problem of anomalous noise rise near points of maximum signal gain in a
parametric amplifier has recently been theorized to be a universal phenomena [8]. The theory
states that the point of maximum signal gain coincides with a bifurcation in the system and a. the
system approaches the bifurcation it undergoes both signal and noise gain. While this effect had
been observed in Josephson junction devices it had not been observed in any other physical
system thereby questioning the universality of the theory. By tuning the system near a period
doubling bifurcation and adding external noise to the system we not only verified the noise rise
phenomena (Figure 4) but also verified the scaling laws predicted by the theory [5].

44

Figure 4 Noise rise near a period doubling - (a) (b) (C)

bifurcation in a parametrically driven mag- f

netostrictive ribbon. f. = signal frequency, 0'
f = pump frequency and fp/2 designates U

the frequency associated with a period 0"ý
Li

doubling bifurcation. (a) System is tuned
far from the point of maximum signal gain ,
(b) system approaches point of maximum o1
signal gain (c) past the point of maximum _ P
signal gain. o ý .Im u m_ I I I ,

-2 g 2 -2 0 2 -2 0 2

DETUNING FREQUENCY (HZ)

In conclusion, we have demonstrated that fiber optic interferometry is ideally suited for
direct observation of the nonlinear strain dynamics of various materials. The inherently low noise
associated with the interferometer allows for direct observation of subharmonic bifurcations with
a large dynamic range, allows for reliable computation of Lyapunov exponents and allows for
the verification of the universality of theories on noise induced processes near bifurcation.
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In recent years there has been much research into lasers using solid state materi-

als such as Nd:YAG, Nd:YLF and LNP as their active media [1]. Microchip solid

state lasers use a thin slab of these materials in a short cavity to ensure single

longitudinal mode operation. They may be pumped by a diode laser and they

produce single transverse, single longitudinal mode output over a large range of

pump powers. It is useful to be able to model the spatial and temporal behaviour

of these lasers with a view to design optimisation.

The laser system we have chosen to model is the plane-plane cavity formed by di-

electrically coating the ends of the crystal. The single diode laser pump is closely

coupled to one end. An empty cavity of this type has no confined transverse

modes but the gaussian gain profile induced by the pump produces gain-guided

modes. We find that these modes are analagous to the Gauss-Laguerre modes

of a non-planar cavity except that certain degeneracies between modes [2] are

broken and the gain-guided modes decay exponentially in wings rather than like

a conventional gaussian.

Our model is based around the usual Maxwell-Bloch equations for the interaction
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of a laser field with the active medium [2]. In steady state the Maxwell-Bloch

equations reduce to the following equation for the radial dependence of the laser

field R(r)

PR l dR m2  1 px(r) Rl2)2= 0.-(i)
dr2  r dr r R 262 + 1 + IIR)2 R(r)=0. (1)

Here m is the azimuthal mode index. The other parameters have been scaled into

dimensionless units and are: 6L the laser output frequency and 6c the longitudi-

nal cavity mode frequency - both referenced to the atomic line frequency, a the

cavity losses, /3 a linewidth factor, X(r) the gain profile shape normalised to unity

on axis. The laser intensity I, the pump parameter p, and bL are considered as

unknowns. If we fix one of these three we can solve for the other two by requiring

that the mode profile R(r) is bounded for large radii.

For the parameters corresponding to the laser of Zayhowski et al. [3] our model

shows that, because of its good overlap with the pump profile, the pseudo-gaussian

(0,0) mode has the lowest threshold. We also predict that, in the absence of ther-

mal effects, the pump threshold for the intrusion of the (0,1) mode when the

(0,0) mode is operating is very high. This is in good agreement with the results

of Zayhowski et al. However, as figure 1 shows, for other parameter values simul-

taneous operation of two or more transverse modes may be possible leading to

more complicated output patterns. The fact that these lasers show such remark-

able stability of their (0,0) mode indicates that a sacrifice is being made in some

other aspect of the design. Our model may be useful in answering such questions.

In this paper we will describe the model and its application to this type of laser.

We will present results on the thresholds and frequencies of the gain guided trans-

verse modes and discuss their stability. For strong pumping, thermal effects may

become relevant [4]. The inclusion of such effects in our model will be described.
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Figure 1: Pump threshold versus cavity detuning for the pseudo-gaussian (0,0)

transverse mode and for the intrusion of the (0,1) mode.
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BEAMS INTERACTION: MANY-BODY APPROACH
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The hexagonal patterns in nonlinear optics previously have

been discovered experimentally [1,2] and numerically [3]. It was

noted that the appearance of the hexagons is one of the

displaying of strong counter-propagated light beams instability,

in particular, in the media with Kerr-like nonlinearity.

In this work we propose to consider the hexagonal output

structure of light beams as a result of dense packing of

filaments formed due to a self-focusing. This hypothesis is

based on the proof of existence of forces of interaction, in

particular, repelling, between filaments. This fact permits to

consider the dynamics of transverse light patterns as a

many-body problem. Furthermore, it is shown that the finity of

thickness of layer of nonlinear medium equivalents to presence

of effective repelling border, bounding the region with the

"gas" of filaments. In a steady-state limit corresponding to

"cooled gas" in a closed volume, the "gas" of filaments

crystallizes as a dense hexagonal packing.

The using of many-body theory gives the possibility to

assign the vibrational freedom degrees to filaments, and on the

basis of that to determine the threshold of transition to a

spatial chaos.

Further, we propose to simulate the spatial patterns

formation at the interaction of counter-propagating beams in a
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Kerr-like medium by the dynamic equations of the following type

atE=iA±E+ jEI 2 E-aE+oWEo/E EE"drL +

+ repelling bounds

where Eo(r 1 )=E(t=O) is the initial condition, corresponding to

the symmetric boundary conditions in the simulation of direct

problem [3), : IEI 2 drL=f rE 2 dr1  is the unvariable total

energy, r<<i is the small parameter determined empirically from

the comparison between the results of spatial dynamics

simulation according to eq.(1) and the direct one [3]. The

principal properties of eq.(1) are, first, the permanent adding

the initial condition E. to the evolution of field E, that

corresponds to the bounds influence in the counter-propagating

interaction. Second, the stability of such solutions as the

Townes wave-guide [4), unstable in a Kerr-like media. This

stability is achieved at o>0\, where "k is the instability index

of the Townes wave-guide, or the eq.(l) solution at a=O. The

stability of filaments as the solutions of eq.(l) corresponds to

the absence of collapsed solutions in the direct problem

statement (3] due to the finity of the interaction length L.

The simulation of the spatial patterns dynamics according

to eq.(1) demonstrates the formation of hexagonal structures,

oscillating spots, rotating set of vortices and spatial chaos.
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Spatial Symmetry Breaking and Coexistence of Attractors in a

Nonlinear Ring Cavity
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Modulational instabilities in nonlinear optical systems play an important role for pattern formation since

they give rise to characteristic internal space frequencies [1]. We address the (uleStion how the pattern for-

mation h)y modulational instabilities influenced by an external spatial modulation of the input. We find a

sequence of temporal frequency locking when the wavelength of the modulation is increased. It also leads

to a spontaneous symmetry breaking of the solutions which allows for the coexistence of various periodic

attractors. This can he explained by the concept, of cooperative frequency locking[2, 3].

Our model system consists of a ring cavity of length £ which contains a probe of homogeneously broadened

two-level-atoms of length L. Transverse effects are taken into account. in one dimension. The wave equation

together with the boundary condition read:

1.0 I .2) (, r- + iA z) = 0 (1)
"Oz+ 2- )2 T+1I,(,)Dz 2k i)x'- ',)[ ,( ,z 1

l',,(x, 0) = vr 7 A(-) + H exp(ikC)/'E,,_I(.x, L) (2)

For explanation of the parameters and the paraineter values, see [3]. The harmonically modulated input

bean A,(x) is:

.4(x) = A0 (I + A, cos(P,,,)),exp(- -- ) (3)

o"-

We investigate the inflhence of the aniplitii(le and tlite frequency of the modulation (A . ) on a P4-solution

in the liimit of no miodilation. We finrd alternating bands of periodic and quasiperiodic or chaotic solhtions

(Fig. 1). This striictire of the phase diagram is d(ie to the influence of tle external frequencies.

The marked points in tle region of k, = 40 helong to solutions with broken svyniietry to tle x=0-axis. This

spontaneoiis symmetry breaking has not, been observed without. 1iuodulat ion and it leads to qualitatively new

bifurcations.

At A,,, = 0.2 one observes a I ransition fromi a non-symmet ry-Ibroken P2-sollution (A-, = 36) to a syninmetry-

broken H4-solution 't A,7, = t10. At A-,, = :37 there apple',ars a period-(loubling bifurcation which is accompa-

tied by a synirmietry-breaking of tlife oitllit profiles (Flig.2). The resulting P,1-attractor is sy imietric. The'

profie's repeat after two resonator passes ii the samie form, but reflected with respect to the x=0-axis. '[Ihis
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first bifurcation can be explained as a modulational instability with a fractional longitudinal period so that

the modulation closes only after two resonator passes. (Fig.4a)

A further increase of the modulation frequency to km= 3.9 leads to an additional bifurcation. One finds two

coexisting asymmetric P4-solutions which are mirror images of each other (Fig. 3a-b) while their profiles

are all different and do not possess any symmetry relations (Fig.3c-f). This second bifurcation is due to a

new, independent modulational instability with integer longitudinal period; this modulation closes already

after one resonator pass and has therefore the sanme periodicity as the solution on which the modulation

takes place. This is a feature reminiscent of the cooperative frequency locking concept,. Since the choice of

the phase of the modulation relative to the phase of the unmodulated solution is arbitrary. two completely

different coexisting attractors are possible (Fig. 4b). Thus, the coexistence of the periodic attractors resuhls

from the locking of different, modulations.

The observed bifurcations have been explained as multi-transverse-mode instabilities in the cooperative fre-

quency locking regime. 'rhis concept can be applied also in the region of stronger nonlinearity where not

only the linear resonator modes are excited. More than that. it. explains not. only the formation of stationary

structures but also bifurcations of periodic attractors.
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Figure captions

Fig. 1: Phase diagram in the k,,,-A,,-plane.

Fig. 2: symmetric IH4-solution: a) complete attractor, b)-e) single profiles.

Fig. 3a)-b): Coexisting symmetry-broken 1P4-at.tract~ors: c)-f) single profiles.

Fig. 4): Sketch of symmetry breaking solutions.
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The Dynamics of Transverse Field Structure in Unidirectional
Ring Laser with Fast-Relaxed Active Medium

!.V.Veshneva, LA.Mel'nikov, A.A.Sokolov, G.N.Tatarko,

Chernysheusky State University,
Research Institute of Mechanics and Physics,
Astrakhanskaya, 83, Saratov. 410071, Russia

We considered the unidirectional ring cavity formed by mirrors
MI-M4, lens L and Gaussian aperture D (Fig.1) and filled with the

L D active medium with homogeneous-
ly broadened gain line. We sup-

M . "'-. M2 pose that the relaxation rates

"of medium polarization y and
Z=. z-I-0 4. inversion r IL obey the con-

ditions WL/c, 7LL/c >/, where
L is cavity length. Thus in

.................... running normalized coordinates

M4 M3 ( z~z/L, r~r(AL/i)- . t-z/c )
one gets the equation for

Fig.I field envelope:

2.E V - (i.#5)GE

where 6 is normalized to 7 detuning of cavity frequency to the
line center, G is round trip gain. Using the model of "flexible"
eigenmodes of beam [1,2] we seek the solution (1) a% a
superposition of Laguerre-Gaussian modes. The parameter of
fundamental mode P is dynamics variable like modal amplitudes:

E(z,r)=E A (z)Llm IL x)xlI I 2exp(iini'-P(z)r2/2), (2)
m-=O,+ 1, a =O, 12

where x='7z)r2, P(z)=i(z)÷ia(z), Limi is Laguerre polynomials.
a

The equations for A' may be obtained as follows:
R
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dAm
2s-_ + (I"' Mk z)A - .(3)

dz I

where Ln cm, n [(m1n.6)V6o +
+ [-2P÷(2iVr-4"r)(m/2+n) + V(2n+m+I)yiS,,÷ 11V*8iko._l],_

Gml = ¢(i.6)fo ,o dx exp(-x-i(k-m)rp) Ln L, //-÷ 2.lE(x,q)l _1
0 0

The equation for P is ad 1,2+ ÷V p2)
dP-i--4

were V is given by the expression from Ref.2. Additionally we use
the field transformation on lens and aperture:

E(z=O,r) = VW_ E(z=l,r) exp(-(-%*iF)r2 /2)

were R is the transmission at aperture center, F is lens focal
power, 71d is the aperture "radius".

The solutions of (3,4) with (5) determines the nonlinear
mapping for (A7, P).

Previously we report the dynamics of this system in single
t ransverse mode limit

. L [3]. With the same
S. L25 values of parameIers
4 R=0.5, 8=0 and •q=O.05

L we have investigate tihe

dynamics of three axial-
3. -.7 ly symmetrical "flexi-

ble" modes (re=O). It was
2. S. found that bifurcation

lines such as threshold
L .line and periodical

"A H regimes do not change

. 5. 3. 4. s. .. r. 8. G appreciably. We observe

I II ,_ _I__ the significant increase

0$ 2T Op of the diameter of beam
when G is increased and

thus for high gain lhe
Fig.2 con f inement of laser
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beam is due to aperturing. In Fig.2 the dynamic states at V=2
(confocal cavity) is shown with the dependence of axial inteitsity
I and 1q from G. In Fig.3 the field profiles evolutions is shown
at the points A,B of Fig.2. "0" denoted zero intensity state, "S"
denoted steady-state regimes with nonzero intensity, "21r" denoted
a cycle with period 2, "QP" denoted quasi-periodic oscillations.
In the regimes 0,S,2T the fundamental "flexible" mode prevailed0
but in QP oscillations A1 mode became dominant. This regimes are
found to be stable against the appearance of mode with m=l. [he
phase singularities connected with such miodes [3] observed at
other laser parameters or other initial conditions and is an
object of current investigations. We have observed the ;ame
behavior of the system with "thin" amplyfier placed at z--/Y.

1.8 3 ?

1.6 2
1.4 24

1.2 A
1.0

0.8
0.6 1

0.4
0.,2

0.L -

A B3

Fig.3

References

I. Derbov V.L, Melnikov LA., Novikov A.D., Potapov S.K.
Journ. Opt. Soc. Amer. 7, 1079 (1990).

2. Melnikov LA., Tatarkova S.A., [atarkov G.N. ,Iourri Opt.
Soc. Amer., 7, 1286 (1990).

3. Brambilla M., Battipede F., Logiato L.A., Penna V. el al.
Phys.Rev.A, 43, 5090 (1991).



TuC5-1 / 157
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In this paper we illustrate several characteristics of dynamic three-dimensional nonlinear

propagation of light pulses. Recent work has shown that the fully spatio-temporal prop-

agation )f a light wave envelope in a cubically nonlinear medium displays, in addition to

the usual transverse structures, longitudinal dynamics which play an essential role in the

evolution of the wave [1, 2, 3]. It has been suggested that the effect of dispersion coupled

with self focusing causes short light pulses having beam waists much larger than their pulse

length to display spectral characteristics typical of experimental observations of supercon-

tinuum generation [1]. A recent computational effort has illustrated that the presence of

dispersi n can inhibit collapse due to two dimensional self focusing in normally dispersive

media, ausing structure in the propagation direction as well as the transverse direction [3].

Finally, analysis of three dimensional propagation of light waves in anomalously dispersive

media [4, 5] reveals a set of symmetric solutions which would exist in the intermediate state

between collapse and dispersal. The practical stabilization of these light pulses is an open

problem.

In this paper a numerical investigation of the propagation of light waves in the presence of

diffraction, dispersion, spectral absorption, and relaxation of the nonlinear index is presented.

The governing equations for the envelope of the light pulse have the form

2ik(a, + -1 -)A -C(O2 + 1,2)A - 2i A(/') I?(t - t')dt' - ,.2 ,A (1)
C9  -- IX

r,+Nt = 1AI 2n2 - A' (2)
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where R(t - t') = f_1(a(Q)+ iAn(f))eia(t-")dQ is the local linear response function of the

medium, and a(Q) and An(Q) are respectively, the experimentally measured linear absorp-

tion and linear index of refraction. For the purpose of this discussion, consider the simplified

model equations with no absorption, a(Q) = 0, instantaneous nonlinearity, and dispersion

given by -yott [2, 3, 4, 5]. Results obtained by extending this model to include experimentally

determined spectral absorption and dispersion will be presented at the meeting.

Let the initial pulse have Gaussian transverse and longitudinal profiles. As such a pulse

propagates, a frequency chirp due to the nonlinearity is formed along the longitudinal direc-

tion. This process is enhanced as the pulse begins to self focus. Gradients in the longitudinal

profile of the pulse grow as the pulse self focuses causing the effects of dispersion to become

significant. In normally dispersive, self-focusing media, the combination of frequency chirp

and dispersive spreading cause the up-shifted and down-shifted portions of the pulse to

move away from the center of the pulse symmetrically. This redistribution of pulse energy is

eventually stopped either due to the weakening of the dispersive effect or as a result of the

nonlinearity.

Even though a portion of the initial pulse may have been above the critical power for

two-dimensional self focusing, the energy in the resulting symmetrical pair of pulses may

have been redistributed in such a way that no portion of the pulse pair is above the criti-

cal power. Thus, dispersion may prevent two-dimensional collapse of a pulse which would

have self focused in its absence [3]. The spectrum is initially broadened forming a disiinct

Stokes and anti-Stokes component. Once the splitting occurs the spectrum takes the form

of a modulated, single-peaked distribution centered at the carrier frequency. Transverse

structure which would appear as a ring in the transverse profile of the pulse may accom-

pany longitudinal pulse splitting. It anomalously-dispersive, self-focusing media the pulse

tends to be temporally compressed, enhancing the catastrophic collapse process rather than

preventing it.

The importance of the frequency chirp may be illustrated by imposing a phase variation

on the initial pulse. In normally dispersive media a frequency chirp which opposes that

accumulated during the propagation of the pulse can tend to delay the occurrence of puIlse

splitting. If the chirp is strong enough the pulse will tend to ternporally compress even

in the absence of an externally imposed waveguide. A frequency chirp which adds to that

accumulated during the propagation of the pulse promotes pulse splitting and may increase
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the self-focusing threshold. If the initial chirp is weak compared to the accumulated chirp,

it may be ineffective in altering the evolution, so the process may seem insensitive to weak

variations in the form of the initial condition.

In media where the nonlinearity does not respond instantaneously, the pulse splitting

effect can also occur. Here the pulse evolves asymmetrically in the longitudinal direction.

The pulse splits about its peak intensity, but the upstream portion may contains a larger

fraction of the pulse energy than the down stream portion. The larger portion may contain

enough power to self focus. As a result, in a medium with noninstantaneous response pulse

splitting may be less effective in preventing collapse.

These initial results show that self focusing can manifest itself as a dynamic three-

dimensional process. Specific characteristics of the propagation of three-dimensional light

pulses may be important in understanding the interaction of short light pulses with nonlinear

materials.
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Introduction

Formation of transversal patterns and the appearance of phase singularities in nonlinear optical
systems have attracted growingly interest in recent years [1, 2]. Up to now, most theoretical and
experimental work has been performed for Maxwell-Bloch systems. However, it also turned out
that these phenomena can be found in other nonlinear optical feedback configurations as well.
Even if the system presented in this paper has in some aspects 'exotic' properties (compared to
Maxwell-Bloch models), it nevertheless shows similar pattern formation with broken symmetry
[3, 4, 5]. We now present the first experimental evidence of phase singularities in the intracavity
wave.

Setup and basic properties

The Fabry-Perot resonator is made up by two planar mirrors (about 90% reflectivity) with a
spacing of some centimeters. The mirror diameter is much larger than the input beam size,
so limited mirror aperture must not be taken into consideration. The Fresnel number with
respect to the input beam size is typically F=5. As light source we use a c.w. Argon-Ion laser
with an output power of up to 700mW. The beam diameter is scaled with a telescope and lies
in the range of 0.3..lmm.

Inside the cavity we place a thin cw-Ar-laser resonator detection
film of Nematic Liquid Crystals (NLC). single frequ. _-"-----"--' __ -_ planem.0rW, 514nm

The optical nonlinearity is based on " 7 5

so-called 'reorientation', which in fact
is a slight local rotation of the optical <\ >

axis. In a low-order approximation, beam diam.

the NLC can be modeled as a self- 0.3 .. lmm
Nematic Liquid plane mirrors

focusing Kerr medium. The medium is Crystal film R= 80..90%
spatially and temporally strongly non- (50 100urn)

local: Reorientation is damped by vis- Fig. 1: Experimental setup
cosity with typical time constants in
the range of -r,, = lOOms, which exceeds the time constant of the resonator by some orders
of magnitude . As a consequence the dynamics of the electrical field of the intra-cavity wave
can be adiabatically eliminated. Furthermore strong spatial coupling with coupling lengths of
about I = 50/tm has to be considered, leading to a diffusion-like behaviour. These material
properties significantly determine the systems behaviour.

It is possible to prove, that diffraction effects inside the sample can be neglected. Hence, the
NLC-film can be regarded as a thin phase object. Thus optical nonlinearity and diffraction are
spatially separated. The dispersive optical nonlinearity is comparably strong: In one passage
through the NLC-film a wave is exposed to an induced phaseshift of up to 7r.
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Structure formation

As long as the diameter of the input beam does not exceed the spatial coupling length of
the NLC, the system shows classical optical bistability. Using larger beam sizes leads to the
formation of transversal patterns with broken symmetry, which can easily be observed in the
resonator output field. The input beam dissociates into a number of small spots. Each indi-
vidual spot has a typical size, given by the spatial resolution of the NLC. Inside the diameter
of the input beam, a maximum number of spots develops, holding a certain distance to each
other and thus leading to a maximum packing density.

Fig. 2: (a) Intensity pattern, (b) Superposition of reference wave, (c) Phase reconstruction

A typical experimental situation is shown in fig. 2a: One spot is established and a second
one is emerging on its right hand side. A theoretical model describing the system has been
developed and numerical simulations of pattern formation are in very good agreement with
experiment. It is also possible to show, that this spatial instabilities are intrinsic and are
caused by diffractional effects [6, 7].

Phase singularities

In order to observe phase singularities, a plane reference wave is superimposed on the resonator
output wave. Like in a hologram, phase information is preserved, even when only the resulting
intensity is recorded.

For detection, we use a com-
mercial video equipment together-, with image processing on a per-
sonal computer. Due to the slow

5j~temporal response of the NLC, it
is possible to resolve the dynam-

i ics of the system. In the result-
" ing interference pattern an end-
ing equi-phase line indicates a

Fig. 3: (a) Magnification of the interference pattern in fig. 2b, phase singularity. At the point
(b) same pattern 5 seconds later of the singularity itself the am-

plitude of the field has to be zero. Using a numerical algorithm we are able to reconstruct
the phase distribution of the resonator wave. Here a phase singularity is characterized by a
2r-phase edge ending in the singularity. Walking around such a singularity, one crosses such
an edge only once (provided the singularity has only single topological charge). Because of this
helix-like structure, phase singularities are also called 'optical vortices'.

Fig. 2b shows the same experimental situation as fig. 2a, but now with the reference wave
present. A magnification of the central upper area is shown in fig. 3a: The beginning dislo-
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cations of the equi-phase lines indicate the creation of a pair of optical vortices with opposite
topological charge. About five seconds later, the two vortices have moved away from each other
(s. fig. 3b). In real-time, this movement manifests itself in subsequent jumping of equi-phase
lines. Vice versa it is possible to observe the annihilation of two vortices with opposite charge.

Fig. 2c finally shows the phase distribution in gray scale (black=-7r, white=ir) reconstructed
from fig. 2b : The two vortices are located at each end of the phase edge in the upper part (At
the border of the spots the algorithm loses its reliability because of lacking intensity. Thus the
structures at the border can be seen as numerical artefacts).

From other observations we can draw the fol-
lowing preliminary conclusions: In our experiment
optical vortices always emerge in pairs with oppo-
site charge. They only appear while a transversal
structure is forming, and are annihilated, when the ý
structure decays. But we have indications that
transversal patterns need not necessarily be ac-
companied by phase singularities. The vortices are
always located in the dark ring, which surrounds
each individual spot of a formed transversal pat- ,-'
tern. Furthermore, the singularities typically ap-1;.. :--
pear in an area where two (or more) spots come Fig. 4: Phase reconstruction of complex
into contact. From the studies of pattern forma- structure formation, at least four pairs of
tion, we know that typical competition effects take vortices are present
place between individual spots [3, 4]. It seems that the vortices are a result of such a 'pat-
tern competition'. In fig. 4, the phase reconstruction of a rather complex pattern with three
dynamically competing spots is shown. At least four pairs of vortices can be identified.

Current work is performed in order to relate the dynamics of pattern formation and the
role of stable and metastable patterns to the appearence of phase singularities.
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We derive the following set of equations describing a two-mode semiconductor laser

for the case of a Fabry-Perot configuration, taking into account the holes burned

into the amplifying medium by the standing field pattern and phase-sensitive

interactions:

a E = -E + A(- ia)(EF + E G)
TI 1 1 2

a E = -(K: - WSE + A(U - iax)(E F + E G)
T2 2 2 1

= + 2 12212

aTG = -z'G(I + IE 2 +E E1 2 ) --2(EE2 + EE )F (1)T1 2 21,2 1 2

where K = K 2/K is the ratio of the decay rates of the electric fields E and E . It

is fixed to be larger than unity. -d is proportional to the decay rate of the

population inversion, A is proportional to the pump, a the linewidth enhancement

factor and T = K t the scaled time. S = (v - v )/K1 is the scaled difference of the

frequencies of the two modes. E and E are complex and therefore the phase dynamicsi 2

is fully included in Eqs. (1). The variables F and G are related to the population
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inversion D(x,t) via

L L

F= - fdx D(x,t), G = fdx D(x,t)cos[L(q - q )x] (2)
DL DL 1 2

0 0 0 0

where q, = v /c, L is the length of the medium filling the cavity and D is related

to the pumping rate. An important element which is taken into account in Eqs. (1) is

the contribution of terms oscillating, in space, at the difference of the wave-

numbers. These terms are neglected in the usual multimode approach of Tang, Statz and

deMars [1].

The steady state solutions of Eqs. (1) are the trivial solution

E = E = 0, G = 0 and F = 1 (3)
1 2

and the two single-mode solutions

E = I e-1i1T, E = 0, G = 0, F = I/A, 91 = 0 (4)1 2 1

E =2 A/KI- I e-2'I, E = 0, G = O, F = K/A, 92 = aK - 6 (5)
2 1 2

which exist for A > I and A > K, respectively. There are also two-mode steady state

solutions with both electric fields different from zero and oscillating with the same

frequency. The steady state solutions are steady in the sense that the corresponding

intensities are constant. Solutions (4) and (5) bifurcate from the trivial solution

(3) at their threshold values A = I and A = K. The solution (4) is stable near A = 1,

whereas solution (5) is unstable near A = K.

A typical bifurcation diagram is shown in Fig.h: the single-mode solution (4) becomes

unstable via a Hopf bifurcation and restabilizes for sufficiently high pump. Since

this restabilization occurs at a relatively high value of A this point is not
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considered here. Solution (5) becomes stable via a Hopf bifurcation and destabilizes

at a steady bifurcation, where the steady two-mode solutions emerge. These two-mode

solutions become unstable via a Hopf leading to stable quasi-periodic solutions. A

branch of such solutions connects also the two Hopf bifurcations on either single-

mode branch. The transition from one single-mode branch to the other is rather sharp.

1.60 1.60

1 121

1.15 1.15 -4 4

0.70 0.70

0.25 0.25 -" "

U---- -----

(a) 0 (b)
-00 1.15 1.60 1.•5 2.10 - .0 1.15 I.60 1.45 2.30

A A

Fig.l. Bifurcation diagrams displaying (a) the intensity I and (b) the intensity I
1 2

of all solutions for K = 1.05, 6 = 2, y' = 0.1 and o = 4. Solid lines indicate stable

steady state solutions, dashed lines indicate unstable steady state solutions.

Crosses indicate the maxima of stable quasi-periodic solutions. Black squares mark

Hopf bifurcation points, the open square marks a steady bifurcation point.
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The effects of an external optical feedback on semiconductor laser
properties have long been a subject of considerable interest[I-71, and
continue to attract growing attention among various scientific groups. Such an
interest is in great part due to the wealth of reported observations, and the
lack of a definite interface between theories, which do not always
corroborate, and experiments. For example, based on their experimental data,
some authors have suggested that the semiconductor laser with optical feedback
could be a good candidate for the observation of optical chaosl2,5,6]. The
idea stemmed from the fact that the feedback signal would provide the
necessary third degree of freedom which when added to the coupled rate
equations would result in a 3D autonomous system (just as in the 'Lorenz' case
of turbulence in fluids) which when the conditions of an instability emergence
are fulfilled may give rise to some route towards optical chaos. Precise
characterisation of such chaotic behavior however still remains obscure.

Although a dramatic linewidth increase has long been known to occur for
moderate optical feedback, the exact origin of this linewidth enhancement from
a few Mhz to up to 40 Ghz, usually referred to as "coherence collapse" [6,7]
has been given distinct interpretations: while many authors attribute the
collapse of the output beam to a kind of deterministic and albeit optical
chaos[2,6], others interpret this effect as a noise-induced frequency chirp
stemming from randomly distributed, noise-induced intensity breakdowns from
steady state operation owing to spontaneous emission events[4]. In the
theoretical side, the well-known "Lang and Kobayashi" delayed
rate-equations[l] have been shown to give fairly good accounts of many of the
reported experimental observations, including coherence collapse[6,7].
However, the delayed feedback term in the equations renders the system of
infinitely high dimension, the integration of which yields a noise-like output
signal just as if it were driven by random forces[61. On the other hand, a
linear stability analysis of these same rate-equations around steady state
predicts a stable output signal[4]. This dilemma, in great part explains why
no definite model has, so far, cut short so as to the exact physical origin of
coherence collapse, or equivalently the tremendous noise which accompanies the
output signal of a semiconductor laser subject to moderate optical feedback.

The purpose of this communication is the construction of a low-
dimensional model whose numerical analysis will be shown to contain some
feedback induced properties inherent to the infinite-D "Lang and Kobayashi"
delayed rate-equations. In particular the well-known distinct regimes related
to the amount of feedback are correctly described with our model. These
regimes are :

i)-low levels, yielding a stable output,
ii)-moderate levels, yielding unstable, and incoherent noisy output with

intensity breakdowns, just as in experiments related to coherence collapse,
iii)-high levels, yielding, again, a stable noise-free output.
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The dynamical properties of such a system are described in terms of the
"Lang and Kobayashi" rate-equations [1,41 :

d/dt(g(t)) = {wo + AG/2(1 + i)a}(t) + kg(t-T) (1a)

d/dt(N(t)) = J - N/T - G(N)g(t)ý(t) (ib)

which relate the complex oscillating field ý(t) with the carrier density of
the lasing medium N(t).

In order to transform the infinite-D set of equations 1, two regions of
operation are clearly distinguished
a)-Below solitary laser threshold :

The system behaves as a compound-cavity laser for which coherent
interference effects, between the reflected light and the field inside the
laser diode, impose the following boundary conditions at the laser facet
facing the external mirror :

g(t-T:) = ý(t

b)-Beyond solitary laser threshold :
The bare laser starts to lase by itself, and the interference pattern

between the reflected light and the field inside the diode will much depend on
the exact amount of reflected intensity :

-For low levels of feedback the reflected waves adjust to the field
inside the laser diode yielding coherent interference effects which in turn
result in a stable output signal;

-For high feedback levels the field inside the diode adjusts itself to
the strong reflected waves yielding also a stable output. This case
describes a laser system with an amplifying medium at one end of the cavity;

-In the case of moderate levels, competition effects occur between the
external compound-cavity field and the bare laser output. The feedback beam no
longer coherently interferes permanently with the diode output field. This
results in an extremely noisy output signal. In other words there is no
correlation between the laser field and the reflected field. We may regard the
system as consisting in two coupled -0(1) active bare laser, and (2) passive
external- cavities. In order to correctly describe this situation the field
is divided into two parts :

• (t) = ý (t) in the laser cavity, and

92 (t) = ý(t-T) in the external cavity.

These assumptions are particularly correct for long external cavities
with small asymetries in the geometrical configuration of the experimental
set-up. This situation allows the external field to be decorrelated to some
extent from the bare laser output signal.

With the above transformations we are led to

d/dt(g (t)) = (iwo + AG/2(Q + ioc))ý (t) + k9 (t) (2a)

d/dt(9 (t)) = (IWo - 1/2T p) K(t) + .ý1 (t)/2T P (2b)

d/dt(N(t)) = J - N/T - G(N) (t)91 (t) (2c)

The second equation only describes the evolution of the field 2(t) which

oscillates inside the passive cavity with a lifetime T, and supplied by the
laser field ý (t) with an amount c.

When we write : gI(t) = E (t)expi(wot + 0(t)), 2 (t) = E (t)expi(wot + E(t))

we obtain a set of 5 equations, which are carefully normalised in order to
simplify their numerical handling.
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Fig.h: Time dependence of the external field showing: a)stable signal for
low (lower trace), and high (upper trace) levels of feedback, and b)randomly
distributed intensity breakdowns in the moderate feedback regime.

Numerical simulations of the normalised equations have been carried
out for an excitation level in the vicinity of the diode laser threshold, and
for parameter values corresponding to the Hitachi HLP 1400 diode laser. The
feedback strength described with the parameter k is scanned from low to high
levels.

Preliminary typical results shown in Fig.1 are self explanatory
-for low feedback strengths the output intensity consists of a stable and

constant signal whose value corresponds to the steady state value given by the
steady state solutions of eqs.2.

-for moderate feedback levels the output signal consists of irregularly
distributed intensity-breakdowns, as experimentally reported by some authors
(3,7). This result seems to indicate that the origin of the tremendous noise
observed in external-cavity lasers with moderate optical feedback has its
roots in the deterministic nature of the non-linearly interacting variables of
the system.

This finding constitute the central result of this communication.
-for higher feedback strengths the output signal again consists of a

regular and noise-free constant intensity as deduced above from intuitive
considerations.
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A systematic investigation of optical feedback induced effects on semiconductor laser diodes
shows a variety of phenomena; some of them are linked to (left-right) symmetry properties of
the system (symmetric solitary device plus optical feedback source). Attention is devoted to
the appearance of feedback induced nonlinearities (kinks) in the P-I curves just above
threshold [1]. Such nonlinearities are present in the characteristic curves taken from both
facets, depend on the feedback ratio, and are reproducible. Kink formation and shaping are
not substantially affected by the path between the laser facet and the reflecting surface; in
particular they are not dependent on the presence of splices or connectors when a typical
transmission line is the subject of investigation. Furthermore the role of optical feedback in
destroying the symmetry between light outputs from the (equal reflectivity) front and rear
facet of the devices is examined in detail, and a connection is established with the feedback
adversely affecting the differential quantum efficiency of the device, in a selected range of
values of the feedback ratio.

Experimental results are discussed in the framework of a microscopic model for single-mode
semiconductor laser in the presence of optical feedback, with major attention to the P-I
curves [2]. The discussed approach can be easily related to the standard rate equation
treatment for semiconductor laser dynamics. In the presence of optical feedback the couple of
equations for the number of carriers and the number of photons are modified as follows:

hp = Z bnc . 2(k-k')np,

1)

S= YT" yx(1 + anPI)nc +e

Optical feedback is taken into account by the term (2k'n•) in the photon dynamics and by the

term (- y, anpbnC) in the carrier dynamics [2]. The first term describes the reinjection of
photons into the laser cavity, the second one describes the interaction between the reinjected
photons and the carriers, and has its origin in the dependence of the interband carrier lifetime
on the electromagnetic field in the laser cavity [3]. Equations (1) apply to the incoherent
feedback regime, when the delay time exceeds the laser coherence time. Experimental results
confirm the role of the parameter a = a(f) and allow an estimate of the weight of the process
that can be ascribed to the feedback effects associated to the term (- yNann•) in the carrier
dynamics. The proposed model is able to describe the usually neglected situation in which
differential quantum efficiency is adversely affected by optical feedback, together with the
common features usually reported in the literature [4].
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Finally the observed asymmetry between the left and right characteristic curves reflects the
symmetry breakdown of the originally symmetric cavity affected by asymmetric single-sided
optical feedback. Such an internal asymmetry of the device can be accounted for by sketching
the laser cavity as a double cavity: the first section (right -or front-) is the one facing the
optical feedback source, the second section (left -or rear-), i.e. the remaining part of the
cavity, is the section poorly affected by optical feedback, in suitable ranges of the feedback
ratio (Fig. 1). The two sections of the cavity (denoted with i=r,l) will be ruled by two similar
couples of rate equations of the type of eqs (1). In the simplest situation a, - 0 so that

(" y, aincinA = 0). The cavity is then described as a whole by coupling the equations
(n,- = n., + npkr and n, = nC, + n,), introducing the global variables N., and N,:

&Pb "NPbNC -2(k - W, - k'r)Npi

-tN hNcN- yc + p•PNnl+e

In the steady state (Nh = 0, Nc = 0) the characteristic P-I curve is

Ib/2ek I - f/2 - tf/2
NPh - 1 - fV2 - Vf12 + A/2 - Af2 - b(l - fV2 - ýfI2 + A/2 + AfI2)

recalling that Pt Nph, b = 4Xrl&%, f = 2k'/k = 2(k',+k'r)/k , A = A(f) = a,/ b,
= 2k'Vk. The quantum efficiency (dNph/dI) both increases or decreases as optical feedback

increases, depending on A(t). For n, = 0 the two-section scheme of the active cavity
identifies-with the left-cavity, N ,P coincides with the number of photons measured at the rear
facet and (i = "/Ib = Ib/2ek)

1 "

Nph = (1.-• - 1)

The quantum efficiency increases or remains unaffected as optical feedback (i.e. k',+k',)
increases, as experimentally observed from the rear facet of the device, and the threshold
current exhibits the same dependence of the feedback ratio, as the one obtained from the
output power on the right side. In the proposed description the dynamics of the system is
ruled by the interplay of the dynamics of the two sections. This interplay is substantiated at a
microscopic level by a nonhomogeneous distribution of the carriers inside the cavity, because
of the asymmetry induced by the optical feedback source. To obtain an explicit link between
t and I the effective dielectric constant and the refractive index dependence on carrier density
(via Kramers-Kronig relations) have to be recalled [5]. The absorption coefficient is
consequently modified determining the absorption probability

a = a, + (1 - exp[qWkTJ)

and, being V directly linked to the injection current, a = a(T) giving:
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S- f/2
S= (() - (logR)/L

a., - (logR)/L

The analytic form for the P-I curve is obtained by inserting the 4 -(I) relationship in the
characteristic curve obtained from the rate equations (1) and the expected kink is observed
(Fig.2). This procedure will allow the control of the parameter • connecting it in a direct way
to physical typical parameters of the material.

LL

Fig. 1 - The Double Cavity Fig. 2 -The kinked characteristic curve
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Previous studies[I-3] of switch-on times in the presence of an injected signal considered class A-lasers.
Here we consider the suitability of semiconductor lasers for detection of weak signals. The main difference
with former studies is that now the carrier number cannot be adiabatically eliminated, so that the laser
frequency is not constant during the laser switch-on.

Our calculation is based on the usual rate equations for a single mode semiconductor laser[4] with an
extra term describing the influence of the external field. In dimensionless units these equations for the
complex electric field z and carrier number n read[5]

z = � [(n - 1)(1 + io) + i ] + kee + (2tn)1 2•(t) , (1)

it = e[A + 1 - n(l + Iz12 )] . (2)

where fe is the external field with coupling parameter ICe. In these equations, written in a frame of reference
which rotates at the frequency ;yl/2e of the external field, gain saturation has been neglected. The reason is
that the calculation of Passage Times (PT) after the laser is gain-switched involves only the first stages of
evolution, when the laser intensity is small. Spontaneous emission noise is modeled by a complex Gaussian
white noise C(t') with zero mean and correlation

< (')*")>= 26(t' - t"). (3)

In addition, we have normalized the laser intensity and the carrier number to their asymptotic steady state
values in the absence of saturation, after scaling the time. It has been shown[5, 6] that the deterministic
drift in the carrier number due to the injection current completely dominates the evolution of n,so that we
can also neglect the nonlinear coupling term in (2). Considering[5] that noticeable laser emission cannot
occur until the carrier number has crossed its threshold value nth 1, which happens at a time t given by

I In I[+ -n()](
E A I

we integrate eqs. (1)-(2) with initial conditions n(t) = 1, z(t) = zo. Since the PT T typically occurs in a
time interval much smaller than e-1, and, for usual laser parameters, (Ats/2) 1 /2 (< T > -t ) >> 1, we can
approximately solve eq. (1) for times later than f as z(t) = h exp[A(t)], where

A(t) = -Y(l + i•f)(t _ 032 + i y'(t _ 03 (5)
4 2e

and

h f (kf•e + NF2i(l + et) ý(t) e A(t) dt + zo, (6)
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and where we have defined a = a - I
The function h contains the stochasticity of the process z(t). It plays the role of an effective random

initial condition which is exponentially amplified in time. The initial value of the field zo is a random
variable associated with the small fluctuations around zero field in the initial off-state of the laser. Unless
the bias current is very close to threshold the effect of zo in the statistical properties of the Passage Time is
negligeable, and in the following we set zo = 0. Therefore, the PT is determined by the condition

i, =1 z(T) 12=1 h 12 e 2 AI(T) ,

which can be inverted to obtain T as a function of a random variable h with known Gaussian properties:

T - t= T I1n .
V2 i-

The statistical properties of T are most easily calculated through the generating function W(p)[3]

W(p) " e-P(2-/A&)'/ 2 e-p 2 /2 r (2. 1/2 + ) M ((A/)/2 + 1 +,1,02/2), (7)

where M(a, b, z) is the confluent hypergeometric function,[7] and we have defined r = ln(i,/ < JhJ2 > and
#

2 = 21 < h > 12/ < Jh
2 >, the natural scaling parameter which appears in the calculation.[3]

The mean and the variance of the PT are now easily obtained,

<T> -t=< T >0 -t I [El(132/2) - 'P(1) + In 0 2/2], (8)
(27-Au) 1/ 2

<AT2 > =< AT2 >0 _-- [Ej ('2/2) ln-) 2/2]2

+ 0n '-i (9)
n=2 i= 1

where < T >0 -t= (27-/A\)"1/2 [1 - 4(1)/2T] and < AT 2 >o= %P'(1)/27-AjM are the corresponding values for
/3 = 0, that is in the absence of external field.[5]

The nontrivial parametric dependence in (8) and (9) appears through the dependence on th'ý scaling
parameter f3 which gives the relevant combination of the different parameters in the problem. In particular,
r2 is proportional to (kefe) 2. The mean PT is not very sensitive to 012: less than a 5% decrease of < T >
occurs in 3 decades of variation of /32. However, the variance c(T) = N/< AT 2 > of the PT distribution
shows a very strong dependence on /2 with a 20% reduction for /32/2 = 1.9, as shown in Fig. (1).

The dependence on p2 gives both the dependence on the strength of the injected field -2f2 and on the
frequency mismatch between the external signal and the laser field. It can be written in the form

0
2 = 2Ga

where A3• is the value of f12 when C = 0. G(d) is the function which carries the dependence on the frequency
mismatch &,

G(a)= -a[ e j! ar (10)

where w(z) is the scaled error function for complex arguments.[8] From the explicit expression for '3
2 we

can conclude that the variance of the PT distribution is much more sensitive to the intensity of the injected
signal than the mean PT. A different question is the frequency selectivity or bandwith in which the injected
field is detected. Since the whole dependence of < T > and < AT 2 > on the frequency mismatch appears
through the function G(d) in the scaling parameter 32, and provided that the mean PT and the variance
are monotonously decreasing functions of f12, their minima as a function of a occur for those values which
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maximize G(a), and the width of this maximum sets the detection bandwidth. We find that the optimum
frequency mismatch q/2e between the laser field and the external field is close to a/2e with a bandwidth of
the order of g: 100 GHz.This optimum value can be understood in terms of a resonance between the external
field and the lasing field when amplification becomes first possible (i. e., t = t): For k, = 0, the frequency 0
of the lasing field is

a= [jn(t) - I + I/,,]

and in the domain of validity of our calculation (E << 1) we find that the optimum detection occurs for
S a/2e = (= t = -).

Since the linewidth enhancement factor a is not generally known with better accuracy that ±1, the
present method could be a promising alternative to better determinations of the a-factor.

1.2
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0.8
<AT 2>/<6T'>,)
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Fig. 1: Variance of the PT distribution normalized to its value when no external signal is applied as a
function of #

2 /2.
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Abstract

T-he Q__y

In earlier work [11 the role of qain nonlinearities in effecting
self-locked FM supermode oscillation in semiconductor lasers was
established and the requisite qain saturation and multiwave mixing
nonlinearities were shown to be consistent with the experimental
observations of Tiemeijer et al (2]. A three-mode laser model is
sufficient to demonstrate the occurrence of intrinsic FM locking in
semiconductor lasers but , in order , for example, to calculate the
depth of FM modulation in the self-locked state a multimode model
is required . In the present work the model of [11 has been extended
to take more than three modes into account

Results

The model has been applied to the calculation of the intrinsic
FM index . As seen from Figure 1, with increasing nonlinearity the
index saturates to a value of 1.3 .This value is in aqreement
with the available experimental evidence.

Consideration of the relative phases in 5 mode , 7 mode and 9 mode
locking shows that an admixture of FM and AM locked states is
obtained . The inhibition of pure FM operation is evident from
time-domain reDresentations of the locked supermodes shown in
Fiqure 2.

Calculations usina the nonlinear algebraic equations appropriate
to the steady ( locked ) state have indicated the possibility of
supermode hopping .Investiaations are now underway into the dynamics
of supermode hoppina in the device.
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Figure 1: Modulation Index Variation
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The light dynamics of bistable element chain Is

theoretically considered within the scope of the plane wave

approximation. It is supposed that bistable elements are

arranged in line and coupled by the light beams (see fig.). As

a model is chosen the bistable thin film of two-level atoms

[1 ,2] subjecting to the relation

2Cet

1 + et

where e, and et - the amplitudes of incident and transmitted

field, C - the cooperative parameter of the film 131.

The Maxwell-Bloch equations can be reduced in the limit

of short relaxation times (the relaxation times of the matter

are smaller than light transit time between the films) to the

many-dimension nonlinear map:

Y*(M) = *I-V •(m- 1)) ,(2)

with •(m) = Xl(xm,:, x 2 (m),..., xk(m),..., XN(m)], where

is proportional to the polarization of the i-th film at the

e4-) (-) (-)I

e el- O. + .
e.0  __..k__e

A-1 +1N
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m-th light transit. The form of the function fk for the k-th

film in Eq.(2) is given by the expression (1) where incident
field depends on x• (rn-I) , x•_-(m-I) and transmitted field

is proportional to X,(m).

The temporal light dynamics is determined by the map (2)

properties which can be summarized as follows:

- the system dynamics is essentially depends on the

reflection index of the medium between the films. In case of

the transparent medium without absorption and if the distance

Ils equal to the integer number of wave length, bistable

elements tend to the simplest stationary regime. The

many-dimensional map (2) has a stable fixed point. The system

properties are similar to a single bistable element operation.

- if the distance I holds the odd number of half-waves

and the medium has absorption, there occur instability of

stationary regime, an appearence of self-pulsations and a

spatial-temporal chaosity.
- the basic features of the bistable element chain can be

understood with help of N=2 model. At the equal amplitudes of

the incident field e(+) and e2--) the problem becomes

symmetrical. The system (2) is simplified and reduced to the

one-dimension map The problem proves to be equivalent to

the study of the dynamics for bistable element which is

supplemented with a reflected surface [2,43.
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Arrays of semiconductor lasers have become widely used as compact sources of intense radiation, gener-
ating watts of power in diffraction limited beams. [1] Their high power makes them attractive as potential
sources for optical fibers. However, their dynamical behavior is not well understood. Ordinarily, the problem
is handled by solving a set of coupled nonlinear differential equations which are descriptive of the coupling
of the carrier and photon populations in a single device as well as the the coupling between the individual
devices. When writing these equations, one generally assumes that the optical gain is independent of the
intensity. However, from a physical perspective, it is reasonable to postulate that the gain will begin to
decrease significantly for sufficiently large photon populations. Several models have been utilized in order to
describe the phenomenon of gain saturation [2]. One formalism assumes that the gain may be described by
g = gL(1 - EX 2 ), where X is a normalized electric field and X 2 is proportional to the photon density in the
laser cavity. This formalism is, however, only valid for low power levels. A second phenomenological form
uses g = gL(1 + EX 2 )-1 . This model has its origins in the two-level model and, since a semiconductor laser
connot be described completely by the two-level model, a third model, which is taken from a non-perturbative
density matrix calculation, has been formulated in which g = gz(l + EX2)-½. It is clear that the presence
of nonlinear gain will be a stabilizing influence on arrays of lasers, but to what degree is unclear. In the
present study, we determine stability criteria for a two-element evanescently coupled laser array using each
of the three models mentioned above in an effort to predict the effect of nonlinear gain on these arrays.

It can be shown [3], [4] that the rate equations for a two-element evanescently coupled array may be
written

dX- = ZIX1 - 77X2 sin E (1)
dT
d"2 = Z 2X 2 + Y7X1 sin E (2)
dr

= -a(Z 2 - Z) + 77(j _ L cose (3)

TdZ1
"Td = p Z - (1 + 2Z,)X2 (4)

dr1TdZ 2
"- = p-Z 2 - (1 + 2Z 2 )X2, (5)

dT

where X, is the field strength, Z, is the carrier density, E is the phase difference between the two elements, 77
is the coupling strength, a is the linewidth enhancement factor, p is the pumping strength and T is the ratio
of the photonic lifetime to the carrier lifetime. These variables are all normalized as in [3]. One can then use
first order perturbation theory to arrive at the conditions of pumping strength and coupling strength under
which stable operation of the array is possible. These stability criteria are 17 > ap/(1 + 2p) for the in phase
mode and q < (1 + 2p)/2aT for the out-of-phase mode. The striking thing about this result is that most
of the phase space is in the unstable region of operation, indicating that it may be ureasonable to expect
that these arrays will ever operate in a stable manner except in the case of very low pumping levels or in
the cases of very strong or very weak coupling. As we shall see, the introduction of the nonlinear gain into
the model has a strong effect on the behavior of the array, allowing for the stable operation of these arrays
over much greater areas of the phase plane.

We may now write the coupled rate equations with the inclusion of the nonlinear gain using the first
model presented. These equations are

dX---2-1 = (- CX2) _X1 77X sin 0 (6)
dr 2
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dX 2  _ , x3
S= X 2 Z2 (1 - CX -) - + 7iX ,sinO (7)

dO = (z2 -_zl (XZ 2 - X2zI)) + 17 x( 2 cosO (8)

dZr

=d-' = p - Z, - (1 + 2Z,)(1 -_ X2)X2 (9)

TdZ2  2

T-2 = p - Z 2 - (1 + 2Z 2 )(1 - ) 2)X2 . (10)
dr

Again, first order perturbation theory is invoked and we define the new variables x = x,- xI and z z,- - Zl,
where the subscripted x and z variables, along with 6 represent the small-signal departures from the steady
state of the field, carrier density and phase, respectively.

Our differential equations now take the matrix form:

- x
2

dX ( XO(1 - CX) 21icos O0e

d _ 27 Xo ( --2 I) -7(1 + 2X2(1 - CX2)) 0 X (11)

, 277 cos Eo -aXo(1 - cX )0

where

X= z (12)

We may now solve this perturbation matrix numerically for varying values of c, q and p and determine the
stable and unstable regions from looking at the real parts of the eigenvalues. The results of this solution were
verified via numerical integration of the differential equations and are shown below. Likewise, we invoke a
similar procedure for the analysis of the second and third cases. We may write the perturbation matrices
for these two cases as

1+x2 14 277/cos ea( 1+ex,0
2oX 2Xs

0  (13)

_______ ax
2C X0- 2u7coseo 00+ 1

for the inverse linear dependence, and

_C -2x 1+2zo) x

..X2 277/cos Eo
2(1+eXol)71"

X 2p

2 -y, Xo j (1+ Cx 2)} 1] __f- (I + 1•/Z+ X2 , 0 (14)
-2r) cos ~o arx0

for the inverse square root dependence. The stability diagrams of these two systems were also verified
via simulation of the differential equations. The stability diagrams of the the first two models are nearly
identical. This is simply because, to a first approximation for low output intensities, 1/(1 + cXj) =1 -_X02.

The stability diagram for the inverse linear model is shown in Figure 1(a) for c = 0.1, 0.2 and 0.3. From
these data, it is clear that the nonlinear gain has the effect of significantly increasing the amount of phase
space under which the stable operation of evanescently coupled arrays may occur. One striking feature of
these results is the fact that the in-phase mode of operation is substantially unaffected by the presence of the
nonlinear gain whereas the out-of-phase mode is clearly very strongly affected. This is indicative of the fact
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Figure 1: Calculated stability boundaries for (a) an inverse linear dependence of the gain with intensity and
(b) an inverse square root dependence of the gain with intensity for c = 0.1, 0.2 and 0.3.

that the stability of the in-phase mode is dependent chiefly upon the extent to which the photons coupled
in from the adjacent emitter represent a significant fraction of the photons generated within the device, i.e.
the extent to which the array acts as one large laser. The stability of this mode is thus more dependent
upon what goes on between the lasers than what goes on within them.

We now examine the third model which exhibits the inverse square root dependence and is derived from
consideration of the intraband scattering time. The stability diagram for this model is shown in Figure
l(b) for e = 0.1, 0.2 and 0.3. The diagram is qualitatively very similar to that of the first two cases. Not
surprisingly, the major difference is the magnitude of the effect for a given value of e. Quantitatively, one
finds that a given value of c in this model roughly corresponds to c/2 for the first two models. This is because,
to a first approximation, we may write (1 + CX 2)-I as (1 - eX2). We thus see a similar though somewhat

less pronounced trend for this case to that which was seen for the first two cases, indicating that the presence
of gain saturation in evanescently coupled laser arrays enables their stable operation for reasonable amounts
of pumping strength and coupling strength.
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SUMMARY

Recently relevant results on optical bistability in Multiple Quantum Well (MQW)

structures at room temperature have been reported [1].

In this paper a rather complete model for optical bistability in Fabry-Prot (FP)

and Distributed Feedback devices (DFB) including a MQW structure is dcscribed.

It includes the optical dielectric response of the MQW structure, the static output

power vs. input power and finally the dynamical behaviour.

To model the optical response of the material, a sophisticated computer code has

been developed which accounts for many-body and Coulomb effects in the electron-

hole plasma. The model is based on the work carried out by Haug and coworkers [2],

but it is generalized to include finite well thickness and valence band mixing. While

the simplified treatment [2] gives rise to only one excikonic resonance, the coupled

system of integral equations for the microscopic polarizations resulting friom the

present model shows, in the dielectric response, a corresponding number of excitonic

peaks. The numerical evaluation has included only one electron and two valence

(heavy and light hole) subbands; this seems satisfactory in the usual situation for

optical bistability, where the working frequency lies below the first exciton absorp-

tion peak. However the more complete model applies also to TM polarization, for

which the electron-heavy hole transition is ineffective. The numerical results are in

satisfactory agreement with experimental measurements reported in the literature.
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The material model, previously described, has been used to evaluate the transmis-

sion and reflection characteristics of a FP and a DFB device [3]. The role of the most
significant parameters on the static response has been analyzed for a GaAs/AlAs
MQW. They include the position of the working frequency with respect to the exci-
tonic peak, the shift of this frequency from the cavity frequency or from the Bragg

condition, the resonator length and the resonator quality factor due to the grating
coupling length. The analysis allows to find the range of the parameter values where
optical bistability occurs; it is possible to optimize the structure and the working
frequency so to achieve good hysteretic cycles.

We investigated numerically also the dynamical behaviour of the system in order
to assess the energy requirements and the time response in the switching processes.

Because the cavity buildup time is much shorter than the recombination times of
the carriers, we utilized a code in which the field variable follows adiabatically the

evolution of the carrier density. The order of magnitude of the response times can
be inferred from Fig.1. Fig.2 shows, instead, the " area rule " that the control
switching pulse must obey in order to ensure the transition from the low to the high

transmission branch.

We started also the investigation of the bistable behaviour in the active counter-
part of optical bistability (OB), i.e. an amplifier with injected signal (AIS). In this
case the MQW structure is subjected to a current which creates population inversion,
which however is not enough to let the system lase. We compare the performances

of OB and AIS in terms of bistable response and energy requirements.
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Dynamical aspects of polarization induced switching phenomena
in diffusively nonlinear Fabry-Perot resonators.

J. Danckaert, H. Thienpont and 1. Veretennicoff
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Brussel, Belgium.

The combination of polarization optics and nonlinear optics gives rise to interesting new
physical phenomena'. In the work presented here we will focus on planar resonators with a
nonlinearity of diffusive nature, such as the nonlinear Fabry-Perot resonator (NLFP). There are
two ways to display the role of polarization in the bistable response of such a device. First, in a
configuration where the light wave is obliquely incident on the resonator, as the interface's
reflectances depend on the polarization state of the incident light. Second, in a configuration
where the beam impinges normally on a resonator now filled with an anisotropic material, as a
phase shift is induced between the linear Airy resonances of the two polarization eigenmodes.
In this paper, two dynamic theories for planar resonators are presented for both configurations
mentioned above, for an arbitrary polarization of the incident plane wave.

A first formalism, referred to as the modal approach 2, is valid for nonlinear planar resonators of
sufficiently high finesse (F>5). In this model, the evolution in time of the two polarization

components of the slowly varying transmitted field amplitude E(') (o=s or p, 's' and 'p' being
t

the labels of the two orthogonal polarizations) is governed by the following equation:

dE(G)2 no.!0 q t +[A, + 19,U]E(")+imtToE(o7) -i(-1)m mtTa EE[)(t) (1)c2 dt tOL 2  t L2 E

where Eg is the incident field amplitude, Au is the detuning from the mth resonance, Ta is the

transmittance of the interface and L the length of the resonator. The nonlinear term is described
by U, where rio is the sign of the nonlinearity. Both the responses for s and p polarized light
are governed by similar equations, all parameters differing for s and p polarization in the most
general (anisotropic) case. Therefore, in the case of arbitrary polarization, the optical behaviour
is governed by two modal equations, which correspond to both polarization states, and which
are coupled through the nonlinear term U. In the case of a diffusive nonlinearity, this term U is
the same in both modal equations, as it only depends on the total irradiance (s and p
components added) inside the cavity. We solved these .equations numerically in the dynamical
regime, together with the usual Debye equation for the nonlinear term.

In the second approach, an evolution equation in space and time for the forward and backward

propagating cavity fields (E• and E ) is derived from the nonlinear wave equation by standard

procedures (slowly varying envelope approximation, etc...). For simplicity, we present here
the case where z, the direction normal to the cavity, corresponds to a principal axis of the
system, yielding 3 :
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s a + c(2)
cosO zE +TE+-fEF = ik11,U E' 2F nc F -• _

-cos0 azEB + -'- DtE0 + 'E = ik 71aU Ea
B cE. Bki2 0  B

The material parameters nca, and xca describe the linear index of refraction, and the linear

absorption, for s and p polarization, respectively, and 0 is the beam angle inside the cavity. We
therefore have to handle a total of four equations, coupled again through the nonlinear term U.
We solved these equations numerically with the appropriate boundary conditions. This
formalism has the advantage of being valid for resonators of arbitrary finesse. On the other
hand, one can see from Eq(1) that in the modal approach the longitudinal spatial coordinate z
has been eliminated, reducing the dimension of the problem by one and thus greatly facilitating
the numerical integration. The (dis)advantages of both approaches will be further discussed at
the meeting.

Essentially two switching phenomena relying on a change of the state of polarization of the
incident wave have been observed. We have called polarization induced switching the up- or
down-switching of the device's response at constant input irradiance. In this case, however, no
switching back to the original state can be established at the same input irradiance. Another
interesting phenomenon, is polarization bistability, where a full hysteresis cycle is run through
as a function of the polarization angle. Polarization bistability has already been demonstrated
theoretically in a nonlinear prism coupler4 . Here it will be shown also to occur in a high
finesse, anisotropic NLFP. In general, for polarization bistability to occur it is necessary to
have a phase shift between the linear s and p resonances.

At the conference, some dynamical aspects of polarization induced switching will be presented,
revealing interesting phenomena such as critical and noncritical slowing down, critical
polarization angles, and critical (polarization) modulation times, for high as well as for low
finesse resonators, and in both configurations mentioned before. As an example, critical
slowing down in a polarization induced up-switching process is shown in the figure on the next
page.

This work could not have been performed without the collaboration between the Applied
Physics Dept in Brussels and the Laboratoire d'Electromagnrtisme, Microondes et
Optodlectronique (LEMO) in Grenoble (France), subsidized by the Flemisch Community
Government in Belgium and the Centre National de Recherche Scientifique in France (projects
91.3 and 92.9). We are especially indebted to Guy Vitrant from LEMO for providing the
numerical codes to solve the modal Eq(1), as well as for the many, most stimulating
discussions.
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Critical slowing down in the polarization induced up-switching process, for different polarization angle intervals
and for a constant value of the incident irradiance (Iin=l 10-3). These curves were calculated using Eqs(2). Ile

different curves in the figure correspond (from the upper to the lower curve) with a maximum value of the
polarization angle of resp., 90', 44*, 28°, 240, 23.4*, 23.3 5* and 22'. The polarization angle rises linearly from 0'
at a time t=100ps to reach his maximum value at t=200ps, and goes then back to zero in the same time interval.
The curves clearly display critical slowing down for values near the critical polarization angle (which is situated
between 23.35 and 23.4*). The device under consideration here is a low finesse NLFP illuminated under an angle of
incidence of 45*. We suppose the etalon to be uncoated, retaining only the natural reflectances of the interfaces

(with an index of refraction n--3.56).
As a reference, also the stationary response curves are shown above. From this and from the dynamical calculation,
one sees that the up-switching is established starting from the low (point 1) to the high (point 3) branch for s-
polarized light, via an intermediate state (e.g. p-polarized light, point 2).
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Opto-Thermal Bistability with Localized Absorption (BO1TAL) deals with etalons in
which the light absorption occurs in one of the reflective coatings while the thermo-optic
spacer is transparent. The separation of functions within the bistable system permits an
independent and, therefore, easier optimisation of both functions and also introduces the
possibility of complex structures with more than one absorbing film and/or with various layers
of different thermo-optic materials [1]. These kinds of structures possess composite feedback
mechanisms and may be used to achieve different logic functions and to study dynamic
instabilities in passive optical systems [2].

We are investigating the dynamics of BOITAL cavities with an absorbing mirror and
a multilayer spacer of alternatively opposite thermo-optic materials [3,4]. Two remarkable
features in the dynamics of such systems are the easy occurrence of homoclinic bifurcations
and the fact that their effective dimension is determined by the number of layers in the spacer.
In the case of bilayer systems, single-frequency oscillations and a variety of homoclinic
bifurcations without complicated orbit structures have been observed both theoretically and
experimentally [3]. For systems of higher dimension, the homoclinicity may appear
accompanied by a rich dynamics associated with the saddle-focus nature of the invariant set
at which the homoclinic orbit makes tangency and Shil'nikov chaos has been numerically
observed in trilayer systems [4]. On the other hand, R6ssler chaos has been also observed in
the response of trilayer systems both numerically and experimentally [5].

This communication deals with BOITAL bilayer cavities irradiated with periodically
modulated light. We report numerical and experimental evidences of a variety of instabilities
occurring in such a kind of forced two-dimensional system. The modulated cavities exhibit
quasi-periodic oscillations, mode locking, period-doubling sequences and other typical
phenomena of forced nonlinear oscillators [6]. More interestingly, they provide a natural way
to investigate the perturbation of homoclinic bifurcations without complicated orbit structures,
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as the ones obtained in the autonomous bilayer system [3], and a variety of chaotic dynamics
associated with homoclinicity have been observed.

The figures present experimental results obtained with a bilayer of glass/quinoline and
absorbing input mirror [3]. Fig.1 shows and stroboscopic representation of the reflected power
as a function of the modulation amplitude when the background power holds the autonomous
system in an oscillating state close to a homoclinic transition. The autonomous frequency is
11.0 Hz and the modulation is at 32.6 Hz. Notice the presence of quasiperiodic (QP), periodic
(P) and chaotic (C) windows. With holding powers far from the homoc'linc transition, chaotic
responses have only been obtained in numerical simulations since they appear in extremely
narrow windows. Fig.2 shows the time evolution, stroboscopic Poincar6 section and phase
projection corresponding to the first chaotic window in fig. 1.

Experiments are in good agreement with numerical simulations obtained from
integration of a system of homogeneous heat equations subjected to the nonlinear boundary
condition describing the input mirror absorption [3].
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The effect of initial phase factor on the properties
of an electro-optical bistable system
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The hybrid bistable system with a delay in the feedback loop , whicl,
was originally proposed and studied by Ikeda"'i , has been widel3
investigated`' '" as this system plays many common instabilit'
behaviours of nonlinear dynamical systems. There is an initial phasc
factor in the equation describing the system dynamics as there are for
most other bistable systems, which ii equivalent to the bias in thc
device. We report the important role played by this phase factor in the
bistability and instability behaviours, especially when the input
intensity of the system is modulated harmonically. The dynamical
equation of the system can be written asa 43

dV (t) /dt+V (t) =0. 51 (Q-Kcos (V (t- t ) + 0))

where V(t) and I are corresponding to the output and input intensities,
respectively, K is the extinction coefficient, T is the delay time and 0
is the initial phase factor. If a modulation is applied to the steady
state, the input intensity could be expressed as

I(t) =o+Acos (cot)

where Io is the steady state value of input intensity where we work on,A
and wo are the modulation depth and modulation frequency, respectively
Along with the linear stability analysis"4 ', it is easy to show that the
initial phase factor plays an important role in the bistability and
instabilities of the system,

(1) The bistability width for the first bistability branch is a
function of the phase factor 0,and the necessary condition for the
appearance of the first bistability branch is governed by

Vosin (Vo+ O) +cos (Vo+ 0) =I/K

with solution of 0< O< /2-1/K
(2) The resonance peak responding to the modulation at the first

eigenfrequency of the system in the stable region without modulation is
a function of the phase factor 0 as well as a function of the modulation
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depth A . With increasing O, the resonance peak moves to the higher side
of frequency o , but with increasing A, the resonance peak moves to the
lower side of frequency coo . The former could be understood as the
eigenfrequency of the linear stability analysis itself is a function of
the phase factor, however, the later one is hardly explained simply by
the linear stability analysis and its origin need to be further studied.

(3) As it is well known that 1.95
there are many frequency locking 0
windows in the unstable region ,
without modulation when the input D

intensity is modulated as shown in 1.66 A

Fig. I (a) , which is the fundamental 1. 95 (b) 0 =0.28
frequency co• of the output intensity
on the modulation frequency coo. It is •
clearly seen that the fundamental B c

frequency ca, eventually approaches 1,55 A

its fundamental frequency without 1,70 (c) 0=0.40
modulation, after many locking regions
with increasing of the modulation G,
frequency (a.. This means that the
response of the system to the .
modulat ion becomes weaker and weaker 1. 6 (d) 0 =0. 50
for larger modulation frequencies. The
most interesting is the effect of the
phase factor 0 on the frequency
locking as shown in Fig. 1. For lower 0. 101
modulation frequency, the locking 0. 00 6.00 10.00
regions are large.With increasing 0, (00
the function of the fundamental Fig. 1: The curves of the
frequency Ca versus modulation fundamental frequency of
frequency (ao becomes more and more output intensity Vs. the
complicated for the lower modulation modulation frequencyw 0 in the
frequencies and the locking regions unstable region for differen.
become smaller and smaller,Fig. 1(b), initial phase factor 0d.
then the first locking region was The parameters are K=0.96,
disappeared , Fig. 1 (c). With The pAramete a 1. 96,
increasing 0 further , the all V(-4. 5 A=1. 0 ,AO =1. 2
locking regions were disappeared at (b) 0 =0. 28, w (A=0) =1. 79
the same time, Fig. 1 (d). The similar (c) 0 =0.40, w (A=0) =1. 36
phenomena have been observed in the (d) 0 =0. 50, (A=O) =1. 26
first frequency locking region. For A: o= ( o=2 w1
small 0, the response oscillation is C: W0 =3u, 1): ou0 =4{oI
almost sinusoidal. With increasing (,
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the response output oscillation undergoes a series of period doubli ig
bifucations and eventually becomes irregular as shown in Fig. 2 and i-s
corresponding power spactrum Fig. 3.
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Fig. 2: The curves of the output Fig. 3: The power spectra S(w
oscillations V(t) for different corresponding to the oscillation3
initial phase factor 0. in Fig. 2.
The parameters of Fig. 2 and Fig. 3 are K=0. 95, Vo=4. 5, A=. 0, T =1. 2
(a) 6 =0. 10, (- o= ¼=1. 75, (b) 0=0.28, (-) o'to =I. 76,

(c) 0=0.40, w o=i-1.50, (d) =0.60, wo=1. 25.

REFERENCES
(1) K Ikeda, Optics Camm 30 (1979) 257

K Ikeda, IL Daido and 0. Akimoto, Phys. Rev. Lett. 45 (1980) 709
(2) M Okada and K Takizawa, IEEE J. Quantum Electronics, QE-17 (1981)

2135
(3) IL M Gibbs, F. A. Ilopf, D. L Kaplan and R L Shoemaker, Phys. Rev.

Lett. 46 (1982) 474
(4) J.Y. Gao, J.M Yua and LM Narducci, Optics Coma 44 (1983) 201

J.Y. Gao and L.K Narducci, Optics Cormi 58 (1986) 360
J.Y. Gao, G.X Jin, J.W. Sun, X Z. Guo, Z. R Zhengp M• R. Abraham
Optics Cmm 76 (1990) 409



TuC19-1 / 195

Dynamic Optical Bistability in A Semiconductor Doped
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Chunfei Li, Yinglin Song, Zizhong Zha and Lei Zhang
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Harbin, 150006 CHINA Tel:321000-4128

In the past decade, experimental results of transient optical
bistabilities in etalons of CdSxSe1-x doped glasses have been
presented by many authors[I-31 . Switching speed of ns to ps orders
has been obtained. However, there still do not exist a dynamics
theory of this transient optical bistability. This paper emphasizes
the dependence of the implementation of transient optical bistabi-
lities on the incident pulse width, the media response time, the
FP cavity establishing time, and also, the influence of the
incident pulse width on the switching speed.

Applying the band filling theory of the semiconductor and FP
cavity model with linear absorption and nonlinear dispersion [4-6,
we have obtain the following equations:

I c= T '

T= AT=I+Fsin 2¢ CiTc)

dN a I c N BN 2 -CN 3

where

Ic-J-C t

Assume that the ref lectivities R1=R2=R=96%, Ic is intensity in a
cavity, then A and Ct are constants:
where a is the absorption coefficient, d is the thickness of the
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e( 1 - 2

C t e ( I -R
I - e-(Xd )( I-+F a)

material and R. is called effective reflectivity, R,=Read.
In order to analyze the characteristic of transient optical

bistability, the following three temporal parameters should be
taken into account, the incident pulse width Tp1 the response time
of the nonlinear media Td and the cavity round-trip time Tr. By
choosing different T_, Td and T., numerical simulations have given
the conditions when optical bistabilities occur. Figure 1 shows the
optical bistabilities corresponding to different cavity lengths.
When AO0=0.6, T =45ns, Td=lns, Fig. 1(a) and Fig. 1(b) are the
optical bistabilities corresponding to two different Tr (da=20Am and
db=3001im), respectively. Figure 2(a), (b) and (c) are optical
bistabilities corresponding to Td= 2 0 0ps, ins and 2ns at AOO=0.6,
T p=30ns, Ii=220KW/cm2 and d=300Mm. Figure 3(a), (b) and (c) are
optical bistable characteristics when T =20ns 30ns and 35ns,
respectively, with A0 0=0.6, d=300Mm, Ii=220KW/cmi and Td=lns.

The above theoretical simulations indicated that optical
bistability could not be obtained when the media response is too
slow (Tp<Td) or the life time of the cavity is too long (Td<Tr).
Specifying to our cases, we have TP/Td>20 and Td/Trýl. Then we have
the quasi-stable condition for transient optical bistabilities:

Tp> Td>Tr

Figure 4 shows the transmissive properties of the optical
bistable device with incident pulses of different width. One can
observe that the switch-on speed is getting faster when the pulse
widths are reduced. Fig.4 (a)-(d) are transmissive waveforms
corresponding to the incident pulse widths of 6, 16, 32, and 60ns,
respectively, at Ii=220KW/cm2 , d=30O0m and Td= 2 0 0ps. The temporal
interval of two adjacent points in the curve is 40ps.

In reference [1), only optical limiting characteristics was
obtained when T =10ns and Td=2ns, ie. T /T =5. While in referenceP d P d
[2], optical bistability was observed with Tp=150ps, Td= 3 . 5 ps and
Tr=3ps which satisfies the relation T >T >Tr.

These experiments have also demonstrated the effectiveness of
our theory. For a CdSxSelx doped glass etalon, the quasi-stable
condition for optical bistability is T_>Td>Tr. Furthermore, The
switch-on speed of the transient optical bistability will be
getting faster with the reducing of the incident pulse width. While
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the switch-off speed depends on the recombination life time of the
carriers. This conclusion can be applied to most of the optical
bistable device with the FP etalon structure filled with semicon-
ductors. One effective approach to increasing the switching speed
of optical bistability is choosing nonlinear optical materials with
fast response time, employing short cavity or cavityless device and
using ultra-short laser pulse.

References:
[1]. B. Danielzik, et al., Appl. Phys. B., 38, 31(1985).
[2]. J. Yumoto, et al., Opt. Lett., 12, 832(1987).
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[5]. D. A. B. Miller, et al., IEEE. Quantum Electron., QE-17,

306(1981).
[6]. J. P. Zheng, et al., Appl. Phys.Lett., 53, 643(1988).
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New Types of Switching Waves and Diffractive Autosolitons

in Wide-Aperture Nonlinear Interferometers and Lasers

S.V. Fedorov, G.V.Khodova, K.S.Kostritskaya, N.N.Rosanov

S.I.Vavilov State Optical Institute

199034, St.Petersburg, Russia

We investigate the new types of transverse patterns in wide-aperture

passive interferometers and lasers. We propose and analyze equations of motion

for a diffractive autosoliton in passive nonlinear interferometers excited by

external coherent radiation with gradually non-uniform characteristics. If

external radiation wave front does not contain dislocations at the

interferometer aperture, autosoliton moves along the steepest descent lines of

effective potential expressed by linear combination of the intensity and the

phase of radiation incident on the interferometer. With the dislocations, the

motion with autosoliton rotation becomes possible. The coupled switching wave

and autosoliton structures in bistable and multistable interferometers are

studied. The dynamics of autosoliton formation in conditions of transverse

field structure instability and in nonlinear interferometer with unstable

resonator is considered. The peculiarity of autosolitons in lasers with

saturated absorption is a diffractive shift of generation frequency. This

aspect being taken into account, positive (bright) and negative (dark) laser

autosolitons are demonstrated and autosolitons interaction is investigated.
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Squeezing in Wide-Aperture Nonlinear Interferometer:

Transverse Effects

1 2A.V.Belinsky , N.N.Rosanov

Faculty of Physics, Moscow State University,

Moscow, 117234, Russia
2 S.I.Vavilov State Optical Institute

St.Petersburg, 199034, Russia

Fluctuations of radiation and of photodetector current present a

fundamental limit for capabilities of parallel optical processing. In this

connection it seems perspective to use the light squeezed states to depress

photon noise of optical images. In this report we consider a possibility of

generation of sufficiently wide (multi-mode) beams of sub-Poisson light

transmitting coherent radiation through wide-aperture nonlinear

interferometer.

The interferometer is filled with Kerr medium, and external radiation

consists of regular (classical) and fluctuational components. Fluctuation

spectrum at temporal 0 and spatial K frequencies is determined by nonlinear

interferometer response to perturbations with frequencies (11, K) and (-92, -K)

(here we omit optical frequency W, K being the transverse projection of the

perturbation wave vector). The spectrum calculations show an appreciable

squeezing in a certain range of temporal and spatial frequencies. The optimal

squeezing may be obtained in a scheme with output radiation heterodyning.
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Theory of a Photorefractive Resonator.
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A theory of the two-wave mixing in a photorefractive medium

placed in a ring cavity is developped following the model first

derived by Yariv and Kwong [1] : a steady refractive index involving

the photorefractive effect is used as a non-linear source-term (PNL)

in the Maxwell equations, and the cavity field is expanded on the

transverse cavity modes. In this model we take into account the

intensity change of both the pump and resonator beams inside the

crystal due to the mutual power exchange : we have developed a

multimode model which gives in the long-time limit the z-

dependance of the fields (z is the optical axis) for a passage in the

crystal, using the expansion in terms of the complete set of the

cavity transverse modes. [2]

In the case of a uniform shining of the PR, a perturbative but

detailed analysis of a monomode oscillation is presented and we

give an analytical expression for the frequency-shift in terms of a

ratio of integrals which presents poles. The presence of a pole

implies that the frequency-shift can be as large as required, as soon

as the parameters are suitably adjusted. Depending on the length of

the crystal (directly related to the convergence of our expansion
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and then to the intensity exchange between the oscillating and the

pump beams) and (D the phase mismatch of the gratings, we analyze

the pole number. For different experimental situations, we use two

parameters in our description : L the crystal length (for the

dominant order calculation) or , the ratio of the cavity intensity to

the input intensity (for the exact calculation) and (D. We show in Fig

la and lb the position of the poles on the 0 axis (presented at the

roots of the S function) for L=O.lcm and L=lcm.

Fig la L=O.lcm Fig lb L=Icm

1.0 1.0

0V 0

- 3 .0 ,, , ,, ,,., ,, , - 9 .0 ,,,, ,,,, ,,,, ,,,,

-0.5 0.5 1.5 -0.5 0.5 1.5
phi (pi unit) phi (pi unit)

One gets qualitatively the same results by a direct integration of the

equations. We present on Figs 2a and 2b the poles frequency shift

versus 0) for 'rm =0.5, and consequently for the power transfert of

50%, and mT,=0.2. The pole number increases as im or the length of

the cavity increases. One can note the nascent pole for the 20%

power transfert.
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Fig 2a •=0.2 Fig 2b • m=0.5
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We also analyze the dependance of the poles with respect to m.

As in increases, the 0-distance between the poles decreases and at

least for 0 = 0 and ic, two new poles appear.

This large frequency-shift, which should be still present in a

multimode description, can explain the successive appearance of the

cavity modes observed experimentally in [3,4], and could then

match the transverse mode spacing which is around 10'Hz. Our

calculations are pursued in that direction. We plan also to derive a

dynamical bimode model to describe some of the experimental

observations made on such a system in the LSH Laboratory in Lille.

[1] A. Yariv and S. K. Kwong, Opt. Lett., 10, 454 (1985).

[2] D. Z. Anderson and R. Saxena, J. Opt. Soc. Am. B, 4, 164 (1987).

[3] H. Rajbenbach and J. P. Huignard, Opt. Lett., 10, 137 (1985).

[4] F. T. Arecchi, G. Giacomelli, P. L. Ramazzi and S. Residori, Phys.

Rev. Lett., 65, 2531 (1990).
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A.V. Malev
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Uljanovskaya str. 1, Petrodvorets, St.-Petersburg, Russia

phone: (812)428-72-20, fax: (812)428-66-49

Transverse effects in optical systems have been intensively studied in

last years/1,2/. But it is rather difficult to analyze resonator diffraction

effects and especially to take into account the influence of space

inhomogeneities on laser generation in the framework of standard approach.

However one can solve this problems in a mathematically sound way using the

self-adjoint extension theory. The extension theory technique provides almost

analytically describing of different physical processes (see /3,4/ for details

and examples). This technique was used in /5/ for chaotic behavior studies of

quantum systems.

In the present work solvable models of open resonators based on the

extension theory are considered. Spectral analysis of open resonators is

carried out and scattered waves (which are of great importance for laser

dynamics studies) are obtained. An open resonator is described as a set of

cotrpled subsystems. Each subsystem is a certain space region where the wave

dynamics is assumed to be known. Subsystems interaction is described in terms

of boundary conditions on regions boundaries. In the framework of this

approach resonator wave dynamics is determined by subsystems wave dynamics and

special properties of the binding channels. Thus an open resonator consisting
IN EX INof two mirrors may be considered as two regions: Ql and Q =R \•IN. Mirrors3

surface and caustic form the boundary of C2IN.EX interacts with QIN through

this boundary though boundary conditions on the mirror and caustic are

different. Analyzing the same resonator but with local inhomogeneity put in It

we are to Include into consideration supplementary external region. In the

limit of single scattering approximation on the inhomogeneity this

supplementary external region has simple structure and joins to the resonator

through the inhomogeneity surface.

In this paper both cases are discussed using one dimensional
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approximation. Unfortunately within one-dimensional analysis no diffraction

losses occurring due to the finite mirrors aperture can be described in a

mathematically rigorous way. However these losses may be formally taken into

account by means of finite dimensional model of the inner space of functions

H . Namely it is considered here the inner space basis to be a set of N

eigenfunctions f , n=l,... ,N of the Laplace operator in L (10,1]) with

Dirichlet boundary conditions

f (o)=ýP (1)=O (1)
n n

In accordance with above mentioned assumptions two models of open

resonators are investigated here. In the first case an open resonator is

explored as a scattering system consisting of nontrasmitting point x=l and

partially transmitting point x=O with reflection r. In the second case the

system under consideration consists of nontransmitting points x=O, x=l,
0

x=x E[0,l]. The point x=x models local inhomogeneity.0

In the first case Q IN is the interval (0,11 and Q EX is the region ]-o,0].

2IN and 0 EX interact through the point x=O. Reflection r plays the role of

binding parameter. In the second case again 9i is the interval [0,11 and 92EX

is the axis I-o,co[.9IN and Q EX interact through the point x=x . In both cases0

the inner operator is the Laplace operator (-AIN) defined on the finite set of

its eigenfunctions with boundary conditions (1). The external operator is the

Laplace operator (-A)EX in L (]-co,O])=HEX defined with Dirichlet boundary
2 1

conditions at the point x=O in the first case. In the second case the external
EX

operator is the Laplace operator in L (]-o,co[) =H2 2

Starting from the orthogonal sum of inner and external operators its

restriction to the domain D ={fED(-AINe-A'X),f=fIefEX, fNEHIN, f EXEH EX,F(f)=O}0

is obtained. The condition F(f)=o reads
I

F(f)= f fIN(x) f (n) Pn(x) dx +
n=1

0

R1 0 01 2 2 fEX(X=+ e -dk Idx k sin(kx) x)=)

2n 7rrtc()

in the first case and
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N
F~) IN( N

F~~f)= ~ f x E(n(xo)0 n(x) ] dx +

0

ikx -ikx
+ •-fk {dx e 0e fEX(x)=0 (3)

in the second one.

Having in mind conditions (2) and (3) thus obtained symmetrical operators

can be extended to self-adjoint ones. Using Krein's method /6/ one can carry

out spectral analysis of the extended operators and describe scattered waves.

Spectral analysis provides resonator eigenfrequencies, losses and spatial

field structure. Scattered waves as it was mentioned are of great importance

for laser dynamics studies.

It is worth to mark that one can realize the similar constructions in

case of three dimensions and take into account finite aperture of resonator

mirrors in the framework of the extension theory. Different resonator

configurations including the ring one may be analyzed using this method.

Describing inner resonator passive optical elements by means of supplementary

coupled inner external subspaces all diffraction effects may be taken into

account.

Considering processes in active medium and supposing the latter to be

optically thin one can assume no dispersion effects and the characteristic

relaxation times of the medium are much greater than the round-trip time

between the nonlinear medium and the feedback mirrors. This allows to model

processes in active medium by means of finite dimensional maps /7/. The

nonlinear effects analysis in this approach is now in progress.
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Stimulated Raman scattering is a quantum macroscopic process
starting from unstable state. Rny fluctuations, initial or boundary,
classical or quantum in nature, lead to the macroscopic output
fluctuations of the Stokes amplitude. Manifestation of these
fluctuations in the statistics of the Stokes pulse energy and its
spectrum have been studied extensiuely foi the linear stage of the SRS
[IL. Another fluctuation phenomena arises in nonlinear stage of the SRS
- the random spikes ,usually called soliton-like, are observed in the
depleted pump [21. Here we show that the reason for these soliton-like
spikes is the conservation of the relative phase -=4 L ¢S+ $ Q of the

laser ,Stokes and the polarization waves [31.

We start from the quantum equation of motion for the SRS
presented in the form of the Bloch-like equations:

ic((S,&. z)= q+SZ, (1); ic(aSZ/6z)= (q-S+-q*S-)/2, (2);

where the operators Stand Sz are connected with the laser EL and

+22the Stokes E5 S amplitude S+= H~iY =E L +E s- E 0(.x)12, SzZZ[IE L+ 2

(tL iS )IE 121/IE oI[1 2 0 IE0 (rI 2 is the input laser intensity , r =t-z/c.

The role of the "Rabi frequency " for the equations is played by
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normalized polarization q+ obeing the stochastic equation

(ala• +r)q+=iglg2IEo(,T)I2S++2g2(DOL /W,)1/2 F+(z,r), (3)

with the stochastic 8-correlated term ( F+(z,r) ). Using the
straightforward numerical calculations we show that in spite of the
difference between the random trajectories on the eloch-like sphere
for different z , the stereographical projection of the trajectories
are almost similar each other. The calculations clearly demonstrate

the eHistence of the quaziintegral for the equations -the value of A
is nearly conserved during propagation in Raman media. We showed
that in the z-t plane two types of regions with different phase
relations are created : the strips stretched along t-z/h -lines with
nearly zero relative phase A (4-0), and the parallel strips with the
,/2 phase difference (4m-0/2). The first type of the strips are
characterized by small gain (small gain strips (SGS)), large value of
time derivative of the phases d Q/dT , d(•L- 5s)/dT and small

temporal width of the strips. The second type of the strips have the
largest (for possible phase relations) value of gradient for the
Stokes and the laser intensities (high gradient strips (HGS)), small
time derivatives of the phases d Q/d T, d( Cs)/& and rather wide

temporal width of the strips.

It should be noted that such a structure of the z-t plane is
similar to the z-t plane in the case of phase wave in
superfluorescence 141. The alternation of the SGS and HGS in time is
to be detected as the temporal spikes in the depleted laser pulse,
the time position of the spikes is coincided with the position of the
SGS. Therefore it is possible to calculate the frequency of the
soliton-like spikes as the frequency of large phase A changes.

Using known solution for the SMS in linear regime we have
obtained the simple formulae for the frequency of the soliton-like
spikes in the depleted laser pulse intensity for highly nonlinear

regime of scattering [3]. The time dependent frequencq of large
phase A4 chanqes for the Gaussian form of the laser input (3) at

different propagation distances qz=25 (1); 45 (2) Is presented on
figure.
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The squares mark the obtained from numerical simulations of Eq.(0 -
(3) reuerse time differences (ti-t,..1F1 between the nearest ualues
ti at which A*=In.

The obtained relations are agreed with the numerical calculations
of the starting equation and e~perimental results (presented on the
figure byj the histogram of the soliton appearance frequency) for
the SRS in H2 gas 151.
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Beside chaotic and regular dynamics, the special kind of
behaviour occurs in nonlinear systems. This is the critical
state arising usually just at the onset of chaos. Its
distinctive peculiarity is a presence of the wide band of
characteristic temporal scales up to infinitely large ones in
the generating signal.

The simplest critical behaviour type was discovered 15
years ago by Feigenbaum [1]. It is associated with road to
chaos via period doubling bifurcations under variation of a
control parameter. If we undertake a multiparametric considera-
tion of transition to chaos, some other types of criticality
may appear in typical situations. Each of these types is chara-
cterized by presence of some specific universal hierarchically
organized structure in a parameter space having a property of
scale invariance.

Here we consider the critical behaviour types taking place
in a laser device consisting of two unidirectionally coupled
subsystems. The first one is the periodically Q-switched
single-mode laser. The second subsystem is also the single-mode
laser using four-level scheme pumped by the first laser without
some backward influence. The next equations may be obtained for
the device dynamics:

Ai=y1 (r-nA1 -A1 ), n1=Kln 1 (A1-- m Cos WOt), (1)

N=1"(n 2 -N), A2 ="'2 (k.-n 2 A2 -A 2 ), 2 =K12n,(A2 -1). (2)
Here A,, A2 are population inversions at working levels of the
both lasers, n 1,, n2 are the field intensities, K is a popula-
tion of the highest energy level in the second laser intermedi-
ate for inversion obtaining. Parameters Ki and K. characterize
the cavity dumping rates, r is the pump rate for the first
laser, k is the coupling coefficient, yl,1' 2 and 1 are the
relaxation rates for corresponding transitions, w and m are the
parameters of cavity dumping modulation for the first laser.

The first subsystem describing by Eqs. (1) is independent
of the second one. It is known that it demonstrates transition
to chaos via period doubling bifurcations [2]. On the other
hand, if we choose the parameters for the first subsystem to
demonstrate periodic pulsations, then the period doubling
scenario may be expected possible to observe in the second
subsystem under variation of its own parameters. We know that
the simplest representative of Feigenbaum's universality class
is a logistic map (1]. So, we expect that the critical
phenomena in the composite system (1,2) will be just the same
as in two logistic maps with unidirectional coupling:
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Here x and y are the dynamical variables, n is the discrete
time, 1 and A are the parameters controlling transition to
chaos in both subsystems, B is the coupling parameter.

Fig.1 shows the disposition of critical surfaces, lines
and points of different type in the three-dimensional parameter
space of the model system (3). There are two Feigenbaum criti-
cal surfaces F1 and F2 corresponding to onset of chaos in the
first and in the second subsystems, respectively. These surfa-
ces intersect along the bicritical line B. The surface P2 is
bounded also by the tricritical line T. The lines B and T meet
in the multicritical point BT. The second end of the bicritical
line is the double Feigenbaum point DF, where the system breaks
down two uncoupled critical logistic maps. The universal
constants for phase space and parameter space scaling are
Sresented in the Table for all critical situations. (For P and

T they were found earlier [1,21, for B and BT we have cal-
culated them numerically by specially developed renormalization
group analysis [41.)

Type of Phase space Parameter space

criticality scaling factors scaling factors

Feigenbaum F -2.502907876 4.66920161

Tricritical T -1.690302971 7.28468622
2.8571 2413

Bicritical B -2.502907876 4.66920161
-1.505318159 2.39272443

Multicritical BT -2.502907876 4.66920161
-1.241 6604 2.654654

1.54172055

Double -2.502907876 4.66920161
Feigenbaum DF -2.502907876 4.66920161

2

Also we find all the mentioned critical situations
directly in the differential equations (1,2). For exampge, the
bicritical point may be easily found if one changes the
parameters of both subsystems (1) and (2) to lead each of them
Just onto the border of chaos. ?ig.2 shows the phase portraits
for both lasers in the bicritical point. The attractor has
fractal, Cantor-like structure, controlling by scaling factors
from the Table.

We believe that investigation of multiparametric critica-
lity has a key significance for understanding of fine hierar-
chically organized parameter space structure for nonlinear
systems demonstrating transition to chaos. Particularly, the
presence of somewhat kind of criticality gives a possibility to
use such simple models as logistic maps for quantitative
description of complicated systems in suitable domains of their
parameter space.
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The present work investigates the influence of external non-
white noise on some bifurcations of states of equilibrium,
period-doubling bifurcation and on the dynamical chaos regimes.
Lorenz system [1] and An ishchenko-Astakhov oscillator (2] are
used as models. The peculiarities of the present investigation
are in combination of numerical simulations with physical expe-
riment and also in the use of cumulant analysis.

For many-parametrical analysis of noise influence the
technique based on transition from stochastic differential equ-
ations (SDE) (or Fokker-Planck equation (FPE)) to dynamical
ones, describing process cumulant evolution, is used [3-5].

The i nvest igat ion of codi mensional two bifurcation is
carried out in the instance of model [6]:

dx/dl = a + Px - x3+ C~)+ (1))
where a and 1 are parameters, C(t) and il() are statistically
independent gaussian noises, describing additive and multipli-
cative action respectively. It was found that additive action
does not lead to qualitative changes of system bifurcational
diagram. Multiplicative noise changes bifurcational picture
drastically: noise intensity D becomes a natural control para-
meter of the system (1). Colored noise leads to some
bifurcational shift.

One of the most interesting phenomena associated with the
influence of colored noise on the bistable systems is the noise
induced transition which is accompanied by the formation of a
hole in the two-dimensional probability density of process [7-
8]. Cumulant analysis applied here allowed to explain this
noise effect in terms of qualitative theory of ordinary dif-
ferential equation: the hole format ion corresponds to the
bifurcation of "saddle-node - repeller" of the sate of equili-
brium of the corresponding system of cumulant equations.

A number of detailed works were devoted to the investigation
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of influence of non-correlated noise on period doubling bifur-
cation [9-11]. The present work investigates the influence of
colored noise on the period doubling bifurcation. The one-
dimensional mapping is used as the main model

X..1 = f(Xn) + (2)
where f(x) - the function with quadratic maximum, • - the
Gaussian source of colored noise, which is simulated by the
stochastic mapping

4n+1 = re n (3)
where r - the parameter, associated with noise correlation
time, -q - white noise with the following characteristics:

<%> = 0, <7q+m> = (-r*)Da(m), Irl<l, DcI. (4)
Parameter D determines the intensity of random process n* The
linear analysis in the vicinity of bifurcational points has
shown that the intensity of spectral subharmonics depends reso-
nancewise on noise correlation time. The values of parameter r,
at which for cycle period 2 k the intensity of subharmonic
reaches its maximum are determined by the following expression

r(k)-- 1-sin(d))/cos(w), w. = (2n+1)x/k (5)
The bifurcational analysis of correspondent cumulant equati-

ons system performed numerically has shown that the bifurcati-
onal lines of birth of doubled period cycles on the plane of
parameters "supercrilicity - r" have extrema corresponding to
the parameter valuesi r=r(k) at which the intensities ofm

subharmonics reach maximum values.
The SDE of Lorenz model has the following form:

2T f-f.ty.1 ) =-y~rx-xz.4Q(), af .=-bZ+xy.4 3(1), (6)

where CQ() are gaussian noises. The invest igat ions of the
finite intensity noise influence have shown that increase of
the noise intensity results in chaosity degree decrease and in
smoothing the structure of the two-dimensional probability
density. For Anishchenko-Astakhov oscillator, SDE of which is
written in the form

dx d X *lz(7

1(x)=0, x90 and 1(x)=1, x>0,
the analogous results have been obtained. In addition to that,
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the physical experiments have been carried out. The
realizations of radio-physical oscillator exci ted by external
noise generator were entered into computer and the two-
dimensional probability density p(x,y) was constructed.

For Lorenz system in the regime of quasi-atiractor [12]
(r=210,a=10,b=8/3) a noise-induced transition has been found,
which is realized in combination of two independent attractors
into one chaotic set. It was also found that in the vicinity of
the transition point the intermitlency of "chaos-chaos" type
was real i zed.

The investigations of colored noise influence on Lorenz sys-
tem were conducted in two regimes: the first regime of Lorenz
attractor (r-28) and the second regime of quasi-attractor
(r=210). Whereupon the noise sources in (6) were simulated by
Ornstein - Uhlen beck processes. The numerical experimen ts
have shown that the characteristics of Lorenz attractor were
invariant relative to the change of noise correlation time. The
above mentioned effects are explained by the presence in the
realizat ion of quasi-attractor of hierarchy of characterist ic
time scales and by origination of non-linear resonant phenomena
due to the change of noise correlation time.
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We present numerical and experimental evidences of Rossler chaos in the response of
BOITAL trilayer systems. BOITAL devices are opto-thermal bistable cavities in which the
absorption occurs localized in the input mirror and the spacer is made of transparent thermo-
optic materials [1]. In the case of multilayer spacers of alternatively opposite thermo-optic
materials, the competing phase-shift contributions of the various layers are affected by
different time delays according to the relative position with respect to the localized heat
source and, in this way, it is possible to have self-sustained oscillations and other sorts of
instabilities in the response of the system [2-4]. A remarkable feature in the dynamics of such
systems is the fact that their effective dimension is determined by the number of layers in the
spacer and, therefore, they permit the analysis of gradual complexity [6]. Another remarkable
features are the easy occurrence of homoclinic bifurcations in their response and the really
good agreement between experiments and numerical simulation by integration of either the
corresponding partial differential equations or a simplified ODE's model of order equal to the
number of layers [6].

In the case of bilayer systems, single-frequency oscillations and a variety of
homoclinic bifurcations without complicated orbit structures have been observed both
theoretically and experimentally [3]. For systems of higher dimension, the homoclinicity may
appear accompanied by a rich dynamics associated with the saddle-focus nature of the
invariant set at which the homoclinic orbit makes tangency and Shil'nikov chaos has been
numerically observed in trilayer systems [4]. In this work we describe the observation of
R6ssler chaos [7] and related homoclinic phenomena [8] in the response of a trilayer system.
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In fact, in the response of BOITAL trilayers we have essentially observed two
different families of phase space structures associated with complex behaviour and a variety
of hibrids of both structures. The first one of such families is the natural extension to a
tridimensional phase space of the bilayer dynamics [3]: On varying the input power, a node
point experiences a Hopf bifurcation and the generated limit cycle grows approaching to a
neighbouring saddle invariant set up to become an homoclinic orbit to this set. Such a saddle
connection is of codimension-one and, according to the actual configuration of the saddle
invariant set, it originates more or less complex dynamics [6].

The other family of aperiodic structures appear relatively far from the saddle invariant
set and the basic evolution on varying the control parameter is essentially that of the Rossler
chaotic band: The limit cycle generated from a node point grows initially in a plane which
does not contain the other fixed points, it soon experiences some kind of bending followed
by a period-doubling sequence and becomes a folded chaotic band of the spiral-type [7]. The
evolution follows from spiral- to screw-type attractors with successively increasing number
of screw turns and, finally, the attractor approaches to the saddle invariant set experiencing
a homoclinic bifurcation of the kind mentioned above. As pointed out by other authors [8],
the evolution from spiral- to screw-type attractors lies on successive codimension-two
homoclinic orbits arising from the reinjection of trajectories close to the internal fixed point
due to the attractor bending.

As an example, the figure presents two experimental results obtained with a
(glass/sunflower oil/glass) trilayer system and which illustrate a simply folded chaoic band
and a periodic orbit near the codimension-two homoclinic connection, respectively. The fine
structure of attractors have been analyzed by means of first-return time return maps
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Pulse statistics of modulated class A single mode lasers is analyzed both numerically

and analytically. The time evolution of the electric field is described by the following

equation

= a(t)E- I E 12 E + 0(t),

where a is the pump parameter and O is the spontaneous emission noise of intensity D.

An analytic approximation is developed for the switch-on time probability density. In

this approximation the time evolution is divided in two regimes: a linear one with noise,

where saturation is not important, and a nonlinear deterministic domain. Using a kind

of self-consistency condition for the switch-on time probability density P(t), an integral

equation is derived for P(t). Numerical simulations show that this approximation is very

accurate (see Fig.1).

We consider the case when the pump parameter is suddenly switched between a

value ab below to a value a above threshold with a modulation period T. The laser

is above threshold during a fraction a of the modulation period, T0,, = aT and above

threshold during Tof f-- (1 - a)T. Two different situations can be distinguished. First,

when ab and/or Toff are large the laser intensity below threshold is mainly due to

the spontaneous emission noise. In this case the results obtained in the repetitive Q-

switching (no modulation effects) are recovered. This corresponds to the constant limit

reached by the mean value and variance of the switch on time in Fig.2.

The second situation happens when ab is small and/or To f! is a small fraction of the
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Fig. 1.- P(t) for three different values of abT:13, 16 and 20(from left to right).

Parameters are a = 10, D = 0.001 and A = 1. Theory (solid line) and simula-

tion (histogram).

period. In this case the steady state is always attained in each pulse and it is found that

the mean switch-on time is a linear function of abT (see Fig.2). In the limit abT -+ 0

the theory predicts the deterministic value a&T(1-a) for the switch on time, that agrees
a

with the simulation result. It is also found that the variance of the switch-on time is a

function of abT (see Fig.2).

As concerns the pulse we have analyzed the maximum light intensity Im and width

A. The probability densities for I.m and A are obtained from that of the switch on time

using the deterministic evolution. The results agree well with the numerical simulations.

In the second situation considered previously Im is a constant given by the steady state

value.
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Fig. 2.- Averaged siwtch-on time and variance. The parameters are the same

than in Fig. 1. Theory (squares) and simulation (crosses).

Finally, the effect of sweeping with a finite velocity of a modulated pump parameter

is also analyzed.
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SUMMARY

A topological defect of a complex field is a point where the intensity
of the field vanishes and the circulation of the phase gradient around
it has a value that is an integer (called topological charge) multiple
of 2n. In optics, defects have been theoretically predicted (1,2] and
experimentally observed both in linear [3] and in nonlinear [4]
systems. Linear experiments consist in scattering coherent light from
random diffusers, resulting in a speckle field. We compare the
experimental statistical distributions of defects for the linear and
the nonlinear case at large F. The nonlinear experiment [4] consists
of a ring cavity in which a photorefractive BSO crystal, pumped by an
Ar÷ laser, acts as a light amplifier via a two-wave mixing
mechanism. At small F, where only one mode per time is present in a
periodic or chaotic alternation [5), the defects are a trivial
signature of the symmetry of that specific mode. On the contrary at
high F, where many modes coexist, the defect dynamics reflects the
mode competition and have a role in mediating turbulence (6]. For a
fixed high Fresnel number we study the fluctuations of the total
number of defects in the nonlinear field. We repeat the same
measurement in the linear case where the fluctuations are trivially
due to a translational motion of the random diffuser. The histograms
relative to the nonlinear and linear case are plotted in Fig.la and lb
together with a Poissonian best fit. In Fig.la we report also the
result of a theoretical prediction by Gil et al. [7). The hypothesis
of their work is that defects can only be created and annihilated by
pairs, with rates of creation r = a and annihilation r = pn2 where n
is the number of pairs present. This lead to a distribution which is a
square Poissonian in the number n of pairs. When reported to the
number N=2n of defects, it becomes:

N -N

P(N) = (N/2) e(1
[(N/2)!]

In Fig.la the distribution (1) correspond to the dashed line. The
difference between this distribution and the Poissonian (solid line)
is below the resolution allowed by our experiment as shown by the size
of the error bars. Therefore, we conclude that the above statistical
indicator is not able to discriminate between the linear and the
nonlinear case. It was shown [4] that the mean nearest neighbor
separation of defects is close to the correlation length of the field.
In order to investigate how defects play a role in breaking also the
time correlation of the field we measure, in the nonlinear case, the
probability distribution of the time separation between defects within
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a space correlation range which contain in general 0 or 1 defect. We
build the probabilities P n(t) of having n successive events within a

time t where an event is the entrance of a defect into the correlation
area. Experimental results for n=0 to n=3 are shown in Fig.2. The
continuous curve is a Poissonian of the same mean value as the
experimental data. The Poissonian would be the correct distribution of
the data if the probability rate w(t) of occurrence (entrance in the
square) of a defect in the unit time was a constant, independent of t.
However, the fit of the Poissonian to our data shows systematic
deviations. In particular, the experimental values of P (t) for n ý

2 are below the Poissonian for very short t and above around the
maximum of the curve, thus showing a sort of antibunching effect. This
means that each defect has an associated refractory time r so that the
occurrence of one defect reduces the probability of a next one in the
successive instants.
We thus conjecture that, if a defect has entered the square at time
t then the rate of occurrence of a new defect varies in time as

w(t) = w4 1 - e ). ( 2 )

This prediction leads to the statistics Q(t) of empty intervals shown
in Fig.3a (solid line).The dashed curve in the same figure reprents
the Poissonian P 0(t) with the same mean value.Comparing this

distribution with the experimental data, for the best fit that
minimize the mean square deviations, we get the values r = 0.46 s and
w= 0.62 s-. Notice that if we evaluate the correlation time of the

sequence N(t) (upper inset of Fig.2a) we obtain a value close to t,

which then represents the average permanence time of a defect within
the observation area. We conclude that the arrival of a defect in the
square implies a refractory time equal to the average permanence time
of the defect in the square. Moreover, the arrival of each defect
induces a loss of correlation in the time series, since at each
arrival time of a defect the probability w(t) looses its memory.
The results of the same measurement in the case of the speckle field
are reported in Fig.3b. In this case T is trivially related with the
uniform speed at which the diffuser is moving.
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Summary

The theoretical modeling and systematic investigation of the transverse effects,

due to diffractive phenomena in the propagation of electric fields in nonlinear

optical systems, have recently received increasing interest, for both passive and

laser systems 1,2

In optical systems, the onset of spatial and spatiotemporal phenomena can be

profitably described in terms of interaction and competition among the modes

of the empty cavity. Relevant for the evolution are the mode frequency and the

spatial configuration of each mode with respect to that of the available gain and

of the loss profile 3 . This mode interaction can lead to the formation of spatial

patterns having symmetry properties different from those of the empty cavity and

to irregular spatiotemporal regimes 4,5 where diffraction assumes the role played

by diffusion in hydrodynamical and open chemical systems.

In this presentation we introduce the model equations describing the evolution

of the electric field and atomic variables for a two-level absorbing medium in a

ring cavity. Provided that the absorbing region is much smaller than the Rayleigh

length, one can describe the transverse spatial profile of the field in terms of fre-
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quency degenerate families of Gauss-Laguerre (GL) modes, while the system's

evolution is determined by the time behaviour of the modal amplitudes.

Ih suitable conditions, we derive the generalized stationary solution equation and

provide the analytical solution for the fundamental TEM 00 stationary solution .

The presentation includes a linear stability analysis showing how the onset of the

modes of a higher-order family destabilizes the singlemode TEM 00 stationary so-

lution, giving rise to more complex spatiotemporal structures. We study then the

dynamical regimes that are observed scanning the parameter space, in both the

good cavity and the bad cavity limits. Occurrence of optical vortices 3 is reported

and in the bad cavity limit, we present some of the many different dynamical pat-

terns the system displays and identify experimentally-accessible parameter regions

where the time behaviour becomes irregular.

Finally, we show that in the limit of good cavity with large atomic detuning and

large cooperativity, the three-mode model (which includes the TEM 00 and the

two modes of the next higher order family q = 1 ) simplifies drastically and re-

duces to a parametric set of ODEs (one for each modal amplitude) that can be

derived from a parametric Hamiltonian 6. In this case both the steady state and

linear stability equations can be solved analytically, and we present the scenario

of stationary single- and multi- mode patterns as well as the onset of dynanmical

patterns which can be obtained under these conditions. In particular it is shown

that when an external field with a transverse TEM 00 configuration is injected,

all possible stable steady states are stationary , while when the injected field has

a TEM 10 structure, a large variety of dynamical patterns is met, ranging from

periodic to chaotic. One can also derive a parametric model in the case of a single

frequency-degenerate family of modes (in our case the family q = 2, consisting

of three modes), and the same steps can be retraced as in the previous case. The

system exhibits here the onset of stationary transverse patterns presenting four

vortices in a regular array structure.
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Fig. 1 a) Chaos in passive optical system: plot of the projection of the phase-space

trajectory. b) Parametric model: the intensity distribution plot in the transverse

plane shows a five-peaked structure with four optical vortices is shown.
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In the last few years it has been found, both theoretically and experimentally, that
interactions among different transverse modes may produce complicated patterns, vortices and
spatiotemporal chaos in active and passive optical systems [1]. In a passive nonlinear resonator
with high Fresnel number but where only a few modes are selectively excited, symmetry broken
patterns and vortices have been observed. We find that, in our system, the total number of vortices
in any one pattern is generally small and the total topological charge is zero. Among the symmetry
broken structures observed in our experiments, we find a recurrent sequence that is similar to one
particular sequence observed in an experiment performed in a laser.

In our experiment a single longitudinal mode, frequency stabilized cw ring dye laser pumps
sodium vapor in a confocal, or nearly-confocal, Fabry-P6rot resonator. The input beam is
intensity stabilized, spatially filtered, and mode-matched to the optical resonator. The light is
circularly polarized and slightly detuned from the sodium Dl line, to operate in the predominantly
dispersive regime. Argon is added as a buffer gas (200 mbar) to mask the effects of the hyperfine
structure of sodium, and the transverse components of the Earth's magnetic field are well
compensated. The control parameters for this system are: input power, detuning of the laser from
the sodium resonance frequency, sodium density, resonator length, working point on the
transmission function of the resonator (resonator phase) and the amplitude and phase with which
the empty resonator modes are excited by the input beam (mode-mismatch). The saturable medium
provides an intensity dependent index of refraction which is radially nonhomogeneous because of
transverse diffusion of the oriented atoms (the laser beam diameter is much smaller than that of the
cell, at whose walls the atoms lose their orientation).

In a small range of sodium densities, where the nonlinearity is weak, all the structures that
appear possess circular symmetry [2]. For higher atomic densities and over a much wider range of
parameters, the angular symmetry is lost, in spite of the symmetry of the input beam and of careful
alignment of the cavity. The sequences of patterns that we observe in this region strongly depend
on the values of the control parameters and may be very complicated. The appearance of similar
sequences of symmetry broken patterns in different systems, regardless of the details of the
nonlinearity or of whether the system is active or passive, may be indicative of certain general
symmetry properties. Examining the sequences that we obtained we find a simple one that
strongly resembles the intensity patterns observed in a laser (a+-+--e<--i in Fig. 2 of ref. [3]), and
predicted with the help of group theory (0"->3--9<-->14 in Fig. 1 of ref. [3]). In addition, we ob-
serve at least two longer sequences that contain this four-piece one in full. The similarity between
full sequences (as opposed to isolated patterns), although verified only in one case, is no,
necessarily a pure coincidence and may imply a similarity in the basic symmetry properties of the
two systems. It is in itself quite remarkable that such different systems have any full sequences in
common. Indeed, our sequences of patterns were obtained by varying the resonator phase
whereas in ref. [3] they were obtained as a function of the resonator configuration.

An example of the development of symmetry breaking is given by the succession of
pictures shown in Fig. 1, taken for successively lower oven temperatures. In Fig. la, we see a
ring structure, generated by interference of the beam with itself in the presence of a sharp gradient
of the index of refraction in the radial direction at high temperature. As soon as the gradient is
reduced, the symmetry of the pattern begins to break (Fig. 1 b) and within a degree centigrade, the
break is complete (Fig. 1c). The range of parameters over which a symmetry broken structure
exists is related to the relative phase with which the input beam excites the resonator modes.

With careful alignment, the patterns that do not possess cylindrical symmetry tend to ran-
domly change their direction, for lack of a preferential orientation. However, for appropriate
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Fig. 1 a) Cylindrically symmetric pattern transmitted by the nonlinear resonator: T=252°C; b) the
rings begin to break up: T=25 1C.
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Fig. 1 c) completely broken Fig. 2 Time dependent signals detected by two photodiodes for a
pattern symmetry: T=250°C. pattern similar to that of Fig. 1c. Bottom trace: outer detector; up-

per trace: inner detector. The upper trace also is somewhat modu-
lated probably because the sensitive area of the inner detector is lar-
ge enough to receive the central peak and the first asymmetric spot.

parameter values these patterns seem to rotate as shown by the two time traces of Fig. 2, detected
at the center and at the edge of the intensity distribution for a pattern similar to Fig. Ic. Note that
this rotation can not be related directly to that observed in lasers [3], since in our resonator there is
only one optical frequency present at any one time: the frequency of the injected laser field.
Although different transverse modes may, and in general will, have different resonance
frequencies, the rotation of this pattern can not be explained in terms of a beat between different
modes. In our system, patterns rotate with frequencies that are of the same order as the time
constant for the atomic diffusion, and therefore the rotation mechanism may be related to this
effect.

Intertwined with the patterns that have (relatively) simple broken symmetries, we find more
complex structures which at least in some cases contain vortices (Fig. 3). The appearance of vorti-
ces in nonlinear optical systems is now well established, but in our observations up until now we
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Fig. 3 a) Intensity pattern containing vortices; b) Interference picture of the pattern in (a), where
four pairs of vortices with opposite topological charge are identifiable. The interference is a result
of mixing the output of the resonator with a reference beam from the dye laser, which is formed by
tightly focussing down onto a pinhole, and then collimating the center of the resulting spherical
wave.

obtained structures where the total topological charge is zero. This result is at variance with what
is predicted (and observed) in lasers [4] and observed in a passive system when the Fresnel
number is kept small [5]. At present, we believe that this discrepancy is due to the presence of an
open boundary in our system and to the zero topological charge that we input into the resonator
[6]. In spite of the large Fresnel number of our cavity, the modes that are excited are extremely
limited in number and are restricted to those of lowest order, due to mode-matching between input
beam and resonator. Under these conditions, the resonator aperture does not act as a boundary for
the creation of vortices. Instead of the extremely large number of vortices that one would expect,
based on the empirical scaling law as a function of Fresnel number of ref. [5], we observe a very
small number of vortices (only up to eight have been observed so far), because of the small
number of low order modes active in our system. This result indicates that the Fresnel number is
not necessarily the most appropriate parameter to use when characterizing transverse effects in an
optical system. In all cases where the system is diffraction limited, (i.e., most lasers and a few
passive systems), the Fresnel number is a meaningful quantity, but in the other cases (e.g.,
optically pumped lasers or mode-matched passive systems) it carries very little information and its
use may be misleading.
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Summary:

Pattern formation in nonlinear systems is a very active subject in many areas of

physics. For example, in hydrodynamics the arrangement of the convective cells of the

Rayleigh-Bernard instability [I ] constitutes a model problem for pattern formation. In optics,

important advances have been recently obtained in the case of lasers [2]. In contrast, transverse

pattern formation in mirrorless optical passive systems [3] is no so wellknown because of the

intrinsic complexity of a system without cavity and of the fact that the first experiments were

done with pulsed lasers [4]. We present here results obtained with c.w. lasers and rubidium

atoms. In particular, we show some interesting relationship with the hydrodynamics

observations.

Two beams originating from a Ti-saphire laser counterpropagate through i. n long

cell containing rubidium vapor at a temperature of about 100'C. The laser is scanned ovwr the
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DI resonance line. The instabilites appear as coherent off- and on-axis emission of light cross-

polarized with the incident beam. The far-field pattern of the off-axis emission may be an

hexagon, a ring, double spots or more complicated shapes (see Fig. 1) depending on laser

frequency and intensity. The observation of the near field pattern shows the self organisation of

light inside the nonlinear medium with apparition of an hexagonal lattice, concentric rings, rolls

etc...

We have also studied bifurcation diagrams for the intensity instability Ii versus the

pump beam intensity Ip. In most situations, a supercritical bifurcation is observed (Fig 2.a).

Bifurcation with a sudden jump of intensity and hysteresis (Fig 2-b) is also observed. Several

features similar to those encountered in hydrodynamics have been observed, like bifurcations

with transition from an hexagon to a double-spot pattern, which corresponds in the near-field to

a transition from an hexagonal lattice to rolls.

The preceeding bifurcation diagrams correspond to an average instability intensity. In

fact, one may as well observe temporal instabilities [5]. We are presently studiyng the temporal

behaviour of both off- and on-axis emission. Near threshold both emission present a static or a

periodic behaviour ( the frequency of the instability being on the order of 0.5 MHz). We have

also observed a quasi-periodic road to chaos while pattern remains apparently unchanged. For

each patterns, correlation between temporal behavior of on and off-axis instabilities will also be

discussed. A deeper understanding of the route towards optical turbulence may be deduced

from these investigations.
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Figure captions :

Fig. 1: Far-field (a) and near-field (b) for hexagonal transverse pattern of the instability.

Fig. 2: Bifurcation diagrams for the intensity of the instability versus the pump beam intensity

Ip. (a) Supercritical bifurcation observed for a wide range of parameters.

(b) Bifurcation with a sudden jump of intensity associated to an hysteresis cycle,

observed on the low frequency side of the instability diagram.

Fig. L.a Fig. 1b

Fig. 2.a Fig. 2.b
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Pioneered by Moloney and collaborators I 11, transverse effects of nonlinear passive systems in

a ring cavity have been the object of extensive study. Analytical investigations with diffractive

coupling in one transverse dimension have demonstrated [Il that static and dynamic transverse

structures occur in this system. Extension of the mean-field dispersive model developed from

optical bistability to include diffraction 121 independently demonstrated qualitatively similar

features, again in one transverse dimension. Investigations in two transverse dimensions have

been largely confined to numerical studies by the Moloney group I l, showing for gaussian

beam illumination ring structures which develop through azimuthal instability to a pattern of

spots which typically execute a slow chaotic motion with a progressive loss of symmetries.

In cavity-less counterpropagating beam configurations hexagonal structures have recently been

experimentally observed 131 and subjected to intensive numerical and analytic study 14,51. In

optical media with third-order nonlinearity, the hexagonal patterns arise typically from forward

four-wave mixing 131. Hexagon structures have been observed experimentally also in the case

of unidirectional propagation. All these considerations suggest that the unidirectional ring

cavity geometry ought to be suitable for hexagonal pattern formation, and we present a
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combination of analytical and numerical evidence that this is indeed the case (Figures 1 and 2).

We start from the two dimensional extension of the ring-cavity model of [21:

DE a2E + 2E(

aEt =_ -E+ Ei+ ihE(IE12-0)+ iax2 + ay 2 ) M.

By setting E = E, (I + A) where A is the deviation (not necessarily small) of the circulating

field from its plane wave steady-state value Es, Eq.(l) can be cast in the form

DA [a2A a2A•
- = -(1 + irjo)A + i I E, I 2 (2A+A*+A 2+2AA*+ I A I2A) + iaA- + -Ay) (2).

at ax2  a>y 2

We have undertaken a bifurcation analysis [61 to calculate the pattern (with a roll, or a

rhomboedric, or a hexagonal structure) which can arise from the modulational instability of the

transversely homogeneous stationary state, and to investigate their stability. We have also

performed the first numerical investigations of Eqs.(l),(2); the numerics indicate that

hexagons are stable over a range below the instability threshold of the plane-wave solution.

Defect structures in the patterns are also observed. These observations are typical of hexagon-

forming systems. A key point about these results is that they are obtained in the framework of

a model which does not demand supercomputer resources on the one hand, and for which there

is considerable experience and expertise in experimental realisation on the other.
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Fig. 1: Contour plot of a stationary hexagon pattern in the transverse plane, obtained at 3%

above the linear instability threshold. Mean field, 0 = 0, and plane-wave pumping.
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Fig.2: Defected hexagon pattern at 6% above the linear threshold, 0 = I.
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The spatial and spatio-temporal phenomena that emerge in the transverse struc-

ture of the electromagnetic field have attracted a lot of attention in recent. years 1'2

We consider a cylindrically symmetrical laser with spherical mirrors, and describe

the dynamics in terms of the competition among different Gauss-Laguerre modes

of the cavity . In this presentation we focus on the case in which the mode conipe-
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tition leads the laser to approach a dynamical state which, according to the values

of the control parameters, can be periodic or quasiperiodic.

The linear stability analysis of the singlemode stationary solution , in which the

laser oscillates with the fundamental Gaussian mode, provides an initial guideline

in our search of the various spatio-temporal patterns which arise. We consider

cases in which the gain line activates one, or two, or three frequency degenerate

families of modes. The motion of optical vortices, from simple rotation to creation

and annihilation in pairs, is analyzed, together with the correlated movement of

the peaks of the intensity distribution in the transverse plane.

We study also the patterns which appear when the cylindrical symmetry of the

system is broken.

We analyze experimentally the simplest dynamical transverse patterns which ap-

pear in Na 2 and CO 2 lasers, selecting values of the control parameters which

correspond closely to those considered in the theoretical studies, and we perform

a systematic comparison between theoretical predictions and experimental obser-

vations.
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The spatio-temporal dynamics of a Perot-Fabry CO 2 laser is
experimentally studied. The cavity is composed of two mirrors with a
lens inserted between them. This system permits to reach very large
Fresnel numbers by adjusting the location of the lens, and so to vary the
frequency spacing between transverse modes on a wide range [11,
typically from almost 0 to 20 MHz in our case, while the free spectral
range is 80 MHz. Two other control parameters are available: the pump
parameter and the cavity length.

For small Fresnel numbers, we systematically compare our
observations of the spatial behavior of the laser with the results
obtained by Lugiato et al on a model of a class C ring laser [2]. This
numerical work describes the transverse profile of the active modes as a
function of the modes of the empty cavity present in the gain profile.
Our experimental system differs from the theoretical case studied in [2]

a)

Fig. 1: In a), high contrast video record of the transverse section of the output

beam of the laser when the TEM01 and TEMI10 modes are oscillating. The

asymmetry of the pattern originates in the symmetry breaking of the system due

to the two-mode frequency degeneracy lift. In b), video record of the transverse
section of the output beam of the laser when the TEM02. TEM20 and TEMI I modes

are oscillating. This pattern is called "4-hole" mode in [21 because of the presence

of four phase singularities in it.
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Fig. 2: Two patterns obtained for large Fresnel number.

on two points: (i) we use a class B laser in a Fabry-P6rot cavity and (ii)

the cylindrical symmetry of the system is slightly broken by

astigmatism effects. However, our observations remain in good

agreement with the results of the model, although the symmetry

breaking may induce some asymmetry in the patterns (fig. 1). On the

opposite, some modes predicted by the model are not observed in this

experiment.

The symmetry breaking in our system partially originates from

the astigmatism effects in the optical elements, which also induces a

degeneracy lift of the frequency of the modes considered in [2]. This

results in a temporal dynamics that cannot be considered in the model

as the interacting modes have the same frequency. The experimental

study of this dynamics shows frequency locking and antiphase behavior,

as for example between the TEMo1 and the TEM 1 0 modes.

As the Fresnel number increases, the spatial behavior looses

completely the cylindrical symmetry and much more complex structures

are observed. The symmetries of all the different patterns that appear

then have their main axes oriented following the astigmatism direction

(fig. 2). So it appears that as the Fresnel number is increased, the

response of the system is more sensitive to the deviation from perfect

cylindrical symmetry.

Similar experimental investigations has been carried out on a CO 2

laser with an intracavity saturable absorber. This system displays new

spatial features in addition to those of the simple CO 2 laser. In

particular, we observed bistability between patterns corresponding to

different mode frequencies.
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As a conclusion, we observe that small symmetry losses of the
laser geometry have a very weak influence on its behavior as long as
the Fresnel number remains low. On the contrary, these defects hold the
spatial behavior symmetry at large Fresnel number.
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Recently we reported' numerical solutions of the full set of Maxwell-Bloch equations for a
laser with transverse profile variations, finding examples of multimode pulsations without defects and
examples of defect-mediated pulsations that could be periodic or turbulent. The onset of turbulence
was illustrated by the loss of spatial correlation -- the decorrelation of intensity fluctuations at separated
points -- as the number of defects increased. In that work, we also reported the first results of parallel
studies using more physical limitations on the transverse profile of the excitation mechanism and using
spatially distributed spontaneous emission noise. The transverse profile limitations effectively
suppressed the higher order radial modes, thereby enlarging the spatial extent of the coherent structure
surrounding each defect. The enlarging of the size of coherent structures around each defect, reaching
a significant fraction of the size of the overall patterns, was sufficient to increase their interaction to a
global one, causing entrainment of the motion of the defects after long transients, with the final states
being periodic motion. We elaborate on these results in the present work.

The equations of motion for a homogeneously broadened laser are2:

=E(p,,t) _ ic [(p) - i A -i • (Vi - p2 + 1)] E(p,9p,t) - 2CKcP(p,q,t)

DP(P,(p,t)_
aP____t) = .- y [ E(p,(p,t) D(p,(p,t) + (1 + i A) P(p,(p,t)] (1)

aD(p,(p,t) I -E(pt)P*(p,1,t) + E*(p,(p,t)PD(p,p,t) x(P)}

where p and 4) are the radial and angular coordinates in a plane transverse to the direction of
propagation of the field; E and P are the slowly varying amplitudes for the electric field and the atomic
polarization, respectively; and D is the population inversion; icf(p), yL, and y1 are the respective loss

rates of the three variables, where f(p) describes transverse variations in the cavity loss such as might

occur due to apertures or finite extent of the mirrors; 2CX(p) is the pump rate for excitation of the

inversion; X(p) is the radial distribution of the pump normalized to 1 at p=O; A is the detuning
parameter, a is a parameter that depends on the radius of curvature of the mirrors composing the
optical cavity; and V2 denotes the transverse Laplacian.

The boundary conditions imposed by the spherical mirrors and the length of the cavity in
conjunction with the atomic resonance frequency determine the optical frequency of operation of the
laser output but do not provide absolute restrictions on the transverse size or boundary values of the
electromagnetic field. The diameter of the laser tube and/or the optical elements inside the cavity limit
the size of the pattern by increasing the cavity losses at large values of the radial coordinates.
Assuming ideal reflectors, and a cylindrical medium we take the losses to be nearly constant in the
central region of the laser and then near an effective boundary (p=po) the losses increase rapidly and
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saturate at a higher level when p>>Po. This approximates the situation in a real laser where the losses
become almost infinite at radial distances larger than the radius of the tube. In our case, in order to
avoid numerical difficulties, it is important to have a smoothly varying function, hence the value of the
gain, C, must be kept small enough so that the ratio between the gain i, d losses is smaller than the
laser threshold for p>po. The parameter a in Eq. 1 a depends on the radius of curvature of the mirrors
and the geometry of the boundaries, and it governs the detuning between the fundamental mode of the
cavity and all the higher order modes.

For the numerical integration of Eqs. 1 we have used a Gallerkin method with Gauss-Laguerre
polynomials as interpolating functions3. This method does not require specific boundary conditions.
We adopted the Gauss-Laguerre polynomials as a convenient basis set because they are eigenmodes of
the empty cavity. We have used 190 collocation points distributed in 19 different angular directions.
To avoid numerical artifacts from sharp boundaries, we have used a smooth function for the
cylindrically symmetric form of the pump profile X(p). For the parameters we used xc = 0.1, y.L = 1.0,

711 = 0.01, A = -0.4, and po = 5.0. The values of a were chosen so that the minimum intermode

frequency spacing (Ka/2) was of the order of 0.1.

The effects of spontaneous emission noise were simulated by adding random white noise to the
polarization equation4, as is appropriate for macroscopic optical systems. We took the strength of this
noise to be proportional to the transverse pump profile (a simplification over the more exact, though
cumbersome, strategy of taking it proportional to the instantaneous spatial profile of the upper state
population). Of course several simplifications are being used at once, since the Maxwell Bloch
equations for a two-level medium do not permit identification of the upper and lower state populations
since only the inversion is monitored with the variable D.

As the excitation parameter is increased and as the Fresnel number is increased, we find a
smooth transition from a nearly Gaussian transverse profile to patterns with more and more defects. If
the higher order modes are attenuated by transverse profiles of the loss and the pump, the defects take
on larger size and tend to develop correlations in their positions and motions. We tend to find patterns
in this case which are fixed except for a uniform rotation rate which is nearly equal to the spacing of
the adjacent angular modes. Such a pattern would result if modes of different radial index and the
same angular index have the same frequency to avoid radial oscillations in the positions of the defects.
Uniform rotation of the pattern results if the modes of different angular indices are equally spaced,
with the spacing frequency equal to the rotation frequency. The asymmetry of some of the patterns
suggests that modes of odd indices dominate, but the fixed rotation frequency at the minimum mode
spacing frequency indicates that all modes contribute and that they are locked to equal spacings.

A wide range of phenomena for different parameter values is summarized in Table 1.
Increasing the pump amplitude sharpens the gradient of the pump profile and this seems to tend to
force the defects to lock without significantly changing the number of defects. In contrast, increasing
the parameter a leads to more defects, which we can understand since the increase leads to a larger
Fresnel number while increasing the intermode spacing. In general, the pump profile with its reduced
excitation far from the axis of symmetry of the medium suppresses higher order spatial modes found
when the profile was assumed to be uniform' and this smooths the irregularities in the patterns without
eliminating the defects. However, in the absence of these more rapidly varying functions, each defect
is of far greater size. This greater size leads to stronger defect-defect interaction and after long
transients we find that patterns of two, three, or four defects eventually reach stable, locked
configurations which then rotate at a common frequency. In some cases the defects lock to a common
radius, in other cases they lock to different radii. In each case the signature of the locking is the
absence of temporal oscillations at the center of the pattern.
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Table 1: Defect Phenomenology

Mode Spacing Pump Parameter Number of Defects Characteristics
Parameter a C

3.0 3.5 1 periodic
3.0 6.0 2 periodic, locked, different radii
3.0 7.0 2 periodic, locked, different radii
3.0 8.0 2 periodic, locked, different radii
3.0 10.0 2 periodic, locked, same radii
3.0 11.0 2 periodic, locked, same radii
3.0 13.0 2 periodic, locked, same radii
3.0 14.0 2 periodic, locked, same radii

2.0 14.0 1 periodic
2.5 14.0 2 periodic, locked, same radii
3.0 14.0 2 periodic, locked, same radii
4.0 14.0 3 periodic, locked, different radii
5.0 14.0 4 periodic, locked, different radii

2.5 14.0 2 periodic, locked, same radii
2.5 12.0 2 periodic, locked, different radii
2.5 10.0 2 periodic, locked, different radii

In conclusion, our numerical simulations demonstrate a sequence of symmetry breaking
bifurcations that signal the arrival of more defects. The increasing Fresnel number is more important
than the mode-spacing in increasing the number of the defects. When the higher order radial modes
are suppressed, the coherent spatial structures in the vicinity of the defects are relatively large and
develop highly correlated motion. The periodic rotation of the pattern of defects indicates that modes
of different radial index but the same angular index are locked to the same optical frequency, while
modes differing in angular index are equally spaced in frequency. This locking of the mode spacings
must be broken before individualized defect motion can occur, and it is the liberating of the individual
defects from the overall pattern that is essential to the onset of turbulent phenomena.
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Since Zacharov and Shabat integrated one-dimensional Nonline-

ar Schr6dinger Equation (lD NLSE) and found solitons [1,2], much

have been done in one-dimensional, but very little in two-

dimensional soliton physics. The integrability of 2D NLSE as well

as existence of solitons in it is under the question to the time.

We analyse 2D NLSE in a defocussing case:

S= i.V2A - iJAJ2 A; (1)

A particullar stationary solution of this equation is so na-

med optical vortex. In the limit r -# 0 (r and 4 are the pollar

coordinates in a plane) it is of the following asymptotic form:

rA('r) = r .exp(-it ± i4') (2)core

where rcore is the vortex core radius. Characteristic for this

vortex is vanishing intensity on its core and that the circulla-

tion of phase gradient on a close loop around it is ±2n. In virtue

of that, the vortex is an object with nontrivial phase topology.

The direct correspondence for the optical vortex (2) in a ID

NLSE case is a standing dark soliton:

A(x) = exp(-icat).A 0 .th( x-x (3)

core

here the parameters w, A0 and xcore are uniquelly defined by baun-

dary conditions. Our hypothesis is, that the vortex solution (2)

Alexander von Humboldt fellow, visiting from:

Dep.Quant.Electr. of Vilnius University,

Sauletekio av.9, corp.3, 2054 Vilnius, LITHUANIA
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of 2D NLSE is also a soliton in a strict sense of the therm "soli-

ton".

The hyphothesis was checked in numerical experiment, where

two opposite charge vortex pairs were collided (if a single vortex

is stationary, the pair of opposite charge vortices is moving with

a constant velocity). The two examples of such numerical vortex

pair collision are presented in Fig., where @ and D signs repre-

sent the location of vortices of positive and negative topological

charges correspondingly.

(D ~0+

@0 S0

Characteristic for the collision is that not only the total

topological charge of the system is integral of motion, but also

the number of vortices (the vortices of opposite charge does not

anihillate in 2D NLSE!). No energy was observed to be lost in form

of radiation during the collision, what is very characterical for

"real" the solitons.

The dynamics of vortices in lasers [3,4] and passive systems

[51 are governed by Complex Ginzburg-Landau Equation CCGLE):

A •-A + (i + d).V2A - (9 + i)IAI A; (4)

which can be treated as perturbed NLSE. The diffusion term d.7 2 A
and the saturated amplification term 0.A.Cl - jAj ) converts NLSE

into nonconservative one, and the vortices in it are no more pure

"solitons.
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The two opposite charge vortices can anihillate as well as to

be activated in (4). The few vortex ansemble enclosed in potential

well can arrange into ordered structures as well as to evolute

periodically or chaotically in time, depending on the parameters

of a physical system described by (4). In the Fig. the stationary

four vortex ensemble is presented obtained by numerical simulati-

ons (left) and experimentally in lasers (4] (right).

In virtue of said above it is possible to observe the phase

transitions between "chaotic vortex gas" state and "vortex crys-

tal" state in optical systems. The properties of this phase tran-

sition are further investigated.
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Turbulent Patterns in Wide Gain Section Two-Level and Rarnan Lasers
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The close synergism between experiment and theory for Rayleigh-Benard fluid convection

has led to the development of sophisticated theoretical models which accurately predict

the onset of widely diverse pattern forming turbulent convection. Close to threshold a

multiple scales weakly nonlinear analysis yields a universal class of amplitude equations which

accurately predict the formation of roll, hexagon, defect patterns and various instabilities of

the underlying roll solutions. An elegant study by Busse of the nonlinear regime established

that turbulent patterns and stable rolls could coexist beyond the first instability threshold.

We will report on a close analogy between turbulent convection in large aspect ratio

fluids and traveling wave turbulent patterns in lasers with wide gain sections. In contrast

to the fluid case, exact traveling wave solutions can be easily derived for the Maxwell-

Bloch equations including diffraction effects. As in the fluid case, we can identify regions

in physical parameter space where stable traveling wave and turbulent patterns can coexist.

For a two-level laser, the stable traveling wave region (Busse balloon) extends down to the

first laser threshold. However the Busse balloon for a Raman laser may lie well above the

instability threshold or may extend down to the first laser threshold, depending on the sign

of the intermediate level detuning from the pump. The physical manifestation of these stable

traveling wave solutions is a controllable (unrder, for example, PZT tuning) off-axis far-field

emission of the laser. Figure 1(a) shows a single friame of both near- and far- field two

transverse dimensional emission palterns for an infinite plane wave-pUmniped ltaman laser

initiated from noise. The system lies at a level of pumIping N0 coinciding with the Iisse

b)alloon region. We observe a turbulent sea of rolls and defects being transporled to the

right in the near-field and a strong far-field emission at a fixe(d angle surroinded by a weak

fluctuating background. Figure l(b) shows a single frame of the near- and corresponlding
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far-field emission for noise initiated patterns at a pump level lying below the Busse balloon.

Here the rolls and defects are being transported to the left and right simnultaneously. as

evidenced by the pair of strong sidebands in the far-field emission.

a)

b)

II

Figure 1 Single frame from a movie showing near- and far-field two dimensional turbulent

output from a plane pumped Raman laser initiated with noise. (a) pump strength coincident

with Busse balloon region. (b) pump strength below Busse balloon region.

The onset of turbulent patterns beyond first threshold in I he Raman laser is caused by

a sideband (Berijarnin-Feir) instability occurring at right angles to the underlying traveling

wave (roll) solution. This instability which is absent in the two-level laser and the fluid

case, causes the spontaneous nucleation of defects from finite amplitude solutions. A weakly

nonlinear analysis of the Maxwell-Bloch equations near threshold, leads to an amplitude

equation of the complex Newell-Whlitehead type. A detailed analysis of this equation is

underway and will allow us to compare and contrast pattern forming inslabilities for the

two-level, Raman lasers and fluid problems. Finite bou iidai y elfects are expected to si rongly

affect pattern formation. Figure 2 shows four frames from the dynamical evolhition of patterns
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in the more realistic case of a super Gaussian-pumped Raman laser. Observe the appearance

of a zig-zag cross roll type instability with rolls and defects being transported to the right.

a) b)

c) d)

Figure 2 Four frames f:orn a movie showing turbulent roll and defect patterns under super

Gaussian external pumping.

Our more recent results predict a remarkably rich pat.tern forming plhenomenonology

which will depend sensitively on the sign of the pump detuning in the Ranian laser anrd on

the mode of initiation of lasing. A distinction can be made between noise initiated or probe

beam selected transverse spatial paIterns. The latter can be viewed as a spatial injection-

locking of the wide gain section laser.
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Spontaneous hexagon formation has been observed when two counterpropagating laser

beams interact in sodium vapor [1] and carbon disulfide [2]. Here we report on investigat ions

into the nature, stability and range of patterns in such systems. We model an anti-reflected

slab of either a Kerr or Brillouin-active medium irradiated on each side by smooth constant

input fields. These may be Gaussian beams [3] or plane-waves.

Linear stability analysis of the Kerr slab is well-understood [4], but with two transverse

dimensions, all small-amplitude solutions are unstable at the linear threshold. We performed

a weakly nonlinear analysis for this system with three space variables plus time. This non-

linear expansion is more difficult than usual because of the longitudinal structure. We have

derived amplitude equations, similar to those in fluid convection [5], describing hexagons

near the linear threshold for self-focusing media.

Two transverse-dimensional numerical simulations have been undertaken on Cray and

Convex machines in the USA and the UK, and the results are in broad agreement with

the analysis and the experiments. In particular, we find that for self-focusing media, sta-

ble hexagon patterns persist to about 15% below threshold both with and without the

wavelength-scale index grating [4]. In self-defocusing media hexagons are not favored, small-

amplitude rolls are the only stable pattern found.

A new phenomenon we have noted is the occurrence of a, Hopf bifurcation near t hreshold.

through which the hexagonal pattern destabilizes. The resultant oscillation, which has a
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period of order a few transit times, exchanges energy between the fundamental hexagon

and a "mixed" hexagon - Figures 1 and 2. In K-space this is identifiable as a four-wave

mixing interaction involving the pump field and an adjacent pair of the fundamental hexagon

vectors, generating dynamics for a new transverse wavevector of magnitude v0 times the

fundamental. Figures 1 and 2 show different phases of this oscillation obtained by numerical

simulation.

To analyze this new instability we have derived a family of equations by projecting

onto modes of the linearized equations. The choice of modes is motivated by numerical

experiment. Most of these modes can be slaved to a few active ones - in fact if all but

three are slaved we return to our original amplitude equations. This model can capture the

dynamics of the full system and Fig. 3 shows the output generated by the AUTO package.

In Brillouin-active media, we have seen [6] that pattern formation in one transverse di-

mension is possible. Whereas patterns in the Kerr slab are observed at the same frequency as

the pump beams, there is a frequency-mismatch in the Brillouin-active slab. This frequency

mismatch seems to preclude the usual mechanism for the formation of hexagonal patterns

in two-transverse dimensions. It is intriguing that hexagonal patterns have been observed

for this system in at least one experiment [2]. We will report on the results of our numerical

simulations.
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Phase singularities (dislocations and disclinations) are generic in waves, linear or not,
and occur in light, sound, microwaves, quantum waves and the tides. They are
complementary to the caustic singularities of geometrical optics.
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Spatial and temporal patterns can be spontaneously formed in a variety

of systems treated in physics, chemistry, biology and other disciplines.

Such patterns may be coherent oscillations in the laser and their inter-

actions with each other, spatio-temporal patterns in fluids, chemical

reactions and a great variety of morphogenetic processes in biology.

The interdisciplinary field of synergetics has shown that in large

classes of systems pattern formation obeys the same basic principles

irrespective of the nature of the individual components. When an open

system that is controlled by one or several control parameters such as

the power input into laser, reaches an instability point, its dynamics

is governed by few degrees of freedom, the order parameters, that govern

the behavior of the individual parts of the system by means of the

slaving principle of synergetics. Order parameters may compete or

cooperate which leads to different kinds of a spatio-temporal behavior

of the system. Examples for competion and cooperation are provided from

laser physics and fluid dynamics.

So far, the formation of patterns was studied for a given system. The

question arises whether we can devise systems, which form specific

wanted patterns by their internal dynamics. Using the concept that

pattern recognition is pattern formation we show how such systems may be

constructed and implemented as a program on a conventional computer. It

will be shown how such an algorithm acts as associative memory and a

number of examplei for recognition tasks will be given. Possible

analogue computer realisations by lasers and solid-state devices will be

discussed.
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Introduction
Bistable laser diodes (BLDs) are expected to be key components in future optical

communication and switching systems, because of the advantage in providing inherent optical
gain. Several kinds of BLDs have been developed thus far [1]. One of the most important
remaining problems with such devices is their limited switching speed and repetition rates.

In this paper a rate equation simulation is carried out to demonstrate a new from of pitchfork
polarization bistability which has significantly different properties from the conventional
hysteresis form of bistability. The simulation shows that the occurence of each form of
bistability depends on the strength of the polarization self- and cross-saturation. The theory also
shows that pitchfork bifurcation bistability allows switching at high rates. This is attributed to
two causes: (1) the switching can be obtained by using only ON switching with optical trigger
pulses and (2) switching speed can be increased by the high bias current (Ib>>Ith) as is
expected in direct intensity modulation of LDs. Experiments are in progress to investigate such
ultrafast switching. We have observed clear polarization bistability by using a novel
configuration in which the TE and TM mode gain are balanced.

Numerical Model and Results
We analyze the behavior of polarization bistability in LDs using the following equations [2].

dn n
d- = P - - - Vg g(n) (1 - EE SE - EEM SM) SE -Vg g(n) (I - EME SE - EMM SM) SM (1)

dSE SE
dt =vg IE g(n) (I - EE SE - CEM SM) SE - + 3B n2  (2)

TpE
dSM SM
dt =vg FM g(n) (I -EME SE - EMM SM) SM - TO + fB n2  (3)a'pM

Here SE and SM are the photon densities of TE and TM modes, respectively. CEE and EMM
are the contributions to self-saturation, and EEM and eME are those to cross-saturation from the
nonlinear gain. When the coherent optical signal SiE/M at a wavelength within the injection
locking band is injected into the BLD, the term _SE/M i) SiE/M / "pE/M is added in Equation

(2) or (3) depending on its polarization. Here, il is the coupling coefficient.
TEJTM polarization bistability is found under the following conditions: (i) coexistence

probability for both the TE and the TM modes and (ii) mutual coupling of both modes via gain
saturation. Bistability occurs if EME EEM> EEE eMM. From the calculations, taking into
account the intra-band relaxation processes, the following relations can be expected: EME =

-EM = 2 FEE = 2 EMM [3,41. The enhancement of the cross-saturation effect can be expected
owing to additional effects such as transverse-mode deformation or polarization-dependent
saturable loss[5,61.
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Figure 1 shows the computed variations in photon density against the excitation rate using
following values: in (a), EEE =NM = 7x10-18 [cm 3], EEM = 6x10- 17 [cm 3], EME = lAx
10-17 [cm 3 ], "E = 0.15, TM = 0.158, TpE =3x10- 12 [s], and TpM = 2.838x10-12 [s], and in

(b) EE = CMM= lx10- 7 [cm 3], CEM = EME = 2x10-7 [cm 3], rE = 0.15, rM = 0.1505, TpE

= 3x10- 12 Is], and TpM = 2.989x10-12 Is]. Other parameters for both cases are the same. In
order to attain hysteresis like bistability (Fig. l(a)) an enhanced cross-saturation effect is
included. However only the intraband relaxation processes need to be taken into account to
allow the demonstration of bifurucation-like bistability (Fig. 1 (b)). In this case, as the pump
rate is increased from zero, the solutions of the outputs of TE and TM polarization bifurcate at
the critical point, and form Branch A. Branch B is obtained by injection of a coherent optical
trigger input with TM polarization at the appropriate bias pump rate.

Ultrafast all-optical flip-flop operation is realized at a rate of 50 Gb/s as shown in Fig.2 With
the system parameters the same as those used for Fig.I(b), the BLD is biased in the regime of
the bifurcated solution, and trigger pulses, with either TE or TM polarization, are injected. The
pump rate P is set at 26 x Pth (Pth is the threshold pump rate), r1 = 1, and SiE = SiM =

SE(P=2 6 xPth).

Experiment
We have used a T-shaped two-armed cavity configuration as shown in Fig.3. A 1.3 Pm

InGaAsP buried heterostructure LD is AR coated on one facet. The optical loss of the TE mode
cavity is changed by the variable attenuator. We can adjust the oscillation wavelengths for TE
and TM modes by the gratings independently.

The current versus light output (I-L) curves for TE and TM modes were straight lines above
the threshold when one arm was cut off. When both arms were coupled simultaneously, the I-L
curves were drastically changed (Fig.4). Polalization switching from TE to TM occured at the
point A which coincided with the anti-phase condition for the LD chip cavity and the external
cavity of the TE mode. Although this system does not include any additional enhanced cross-
saturation effect, the I-L curve shows clear bistable characteristics. We have observed almost
complete bistable ON-OFF switching for both TE and TM modes with increasing the optical
loss of the TE arm.

Another interesting bistable characteristic was observed. At the current grater than the point
A in Fig.4, the TE output changed to the upper branch, when the TM arm was cut off. And
then the output stayed on the upper branch even when the TM arm was recoupled (Fig.5).
Polarization switching from TE to TM occurred repeatedly with increasing the current as shown
in Fig.5. These results suggest that the system shows pitch-fork like polarization bistability.

Conclusion
This paper reports ultrfast all-optical flip-flop operation in new pitchfork bifurcation like

polarization bistability in LDs. We believe that this theoretical approach taken here is also
applicable for bistable switching between longitudinal modes in LDs. We have observed clear
polarization bistable switching by using a T-shaped two-armed cavity configuration.
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Generally, TE-mode emission (the transverse electric field is polarized parallel to the active-
layer plane) is favored in unstrained semiconductor lasers in comparison with TM-mode
emission (the magnetic field is polarized parallel to the active-layer plane) due to a larger
reflectivity for the TE wave at the cleaved facets forming the laser cavity. The optical gain
delivered from the active medium is the same for both modes, i. e., gTE = gTM = g
given by g = A ( N - NO) where A is the gain coefficient, N is the carrier density, and No
denotes the carrier density required to achieve transparency, g = 0.
However, tensile biaxial strain in the active layer plane as caused by a lattice misfit between
the active and the cladding layers may increase the optical gain for the TM mode and,
simultaneously, decrease that for the TE mode according to a change in the structure of
light-and heavy-hole bands of the
active medium, e. g. /1/, expressed -
by the relations ATM >ATE and
Norm < NOTE. Hence the effective
(small-signal) gain for TM emission,
defined as the difference between
optical gain and loss, may approach
and, finally, exceed that for TE emis- F
sion provided that N becomes suffi- 7 G I 4

ciently large. Then mode switching
from TE to TM may be initiated by L ''inp
several mechanisms such as nonlinear Fig. Ia Fig. lb
gain suppression, /2/, and lateral
waveguiding effects, /3/, see below.
This paper presents experimental and , P
theoretical results of TE-TM mode 8

switching and bistability in - t
InGaAsP/InP ridge-waveguide (RW-) 6 ,

lasers with lasing wavelength at <B

1.3 )Am. Besides RW-lasers with • -- /
commonly used ridges of rectangular 4

cross section, Fig. la, also lasers with 2

"waist shape" ridges have been em- 2 l

ployed in our experiments. These 2-

ridges consist of a trapezoidal bottom
part and a rectangular top part, see --

Fig. lb. The z-axis in Figs. la,b 0[ A1

points to the direction of light wave - -

propagation in the laser. We have Fig. 2

found that lasers with waist shape
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ridges exhibit TE-TM switching and bistability at room temperature whereas lasers with
rectangular ridges do not.
Fig. 2 shows the measured light power-current characteristics for the total output power per
facet, curve (1), and for the output power of the TE (full line) and TM (dashed line) modes,
curve (2). Lasing starts at about 39 mA in the TE mode. The polarization of the emitted
radiation changes abruptly from TE to TM at switching current ls2 connected with an
increase of the total output power, AP.
Above Is2 stable TM emission was found. T .... -

With decreasing injection current the
polarization flipped back from TM to TE -

at Is,. The width of the hysteresis, Al, is • -
about 10 mA, see Fig.2.
The switching dynamics have been in-
vestigated by means of injection current
modulation with modulation frequencies o.oo 35.3 106.0 176.7

up to 900 MHz. As can be seen from Fig. 3a timefps

Fig. 3a a switching time of about 50 ps is
found being the shortest switching time
between polarization modes of a laser - -

measured so far, /4/. Fig. 3b shows alter- i L ' -\

nating TE- and TM-mode emission in the
case of 500 MHz current modulation
indicating stable TE/TM modulation of --

laser radiation. 0.0 1.0 2.0 3.0
Also respective theoretical investigations 0 0e .ns .

have been carried through. In particular, Fig- 3b

the lateral behavior (i.e., along the x-axis,
see Fig. 1) of the refractive index has been studied from which it may be deduced that lateral
waveguiding of the TM mode, as compared with the TE mode, is relatively more effective

I- , -i-57

TEM
8*wiwE¶*cruTaII - _ -3dIi A) -

Fig. 4a Fig. 4b

in lasers with a waist shape ridge than in lasers having a rectangular ridge. Furthermore, the
light power of TE and TM mode has been calculated for both types of lasers at various
parameter values. As an example Figs 4a,b represent the steady-state TE and TM output
power versus injection current, where the following parameter values have been used:
ATE = 2.0 x 10' 6cm 2, ATM = 2.6 x 10-16 cm 2, and N(rr. = N~rM = 1.0 x 10"cm3 .
The numerical calculations are based on the beam-propagation method (BPM) considering
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the longitudinal (along the z-axis) and lateral distributions of carrier density and complex
field amplitudes of the TE, TM modes in the active-layer plane. From Figs. 4a,b it follows
that, in agreement with the experiments, TE-TM switching and bistability is obtained for the
laser with a waist shape ridge, Fig. 4a, while the laser with an assumed rectangular ridge,
Fig. 4b, exhibits only TE-mode emission.
The aforementioned switching between TE- and TM-mode emission can be explained as
follows:
Due to a smaller cavity loss the TE mode reaches the laser threshold first. In lasers with a
rectangular ridge a strong depletion of carrier density prevents the onset of TM-mode lasing.
By contrast, carrier depletion is smaller in diodes with a waist shape ridge because of a
worse lateral confinement of the TE mode. In this case the TE mode is not able to prevent
TM- mode emission when the injection current reaches a certain value. Detailed numerical
calculations show that the onset of TM emission leads to a change of the lateral carrier
behavior accompanied by a respective change in the index of refraction which gives rise to
a stronger curvature of the lateral phase fronts of the TE mode. This, in turn, causes a
further decrease in TE confinement resulting in the suppression of TE-mode emission by the
TM mode.
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Semiconductor laser diodes with external optical feedback (EOFSL) have found

considerable interest within the last 10 years /1-6/. This is due to the practical

importance of this system as well as the EOFSL can serve as a model system for

the investigation of the dynamics of nonlinear systems with countable infinite

dimensions. EOFSL exhibit drastic changes in the output behavior for specific

values of the operation parameters, especially a coherence collapse of the laser

output can be found /1/. Experiments and numerical simulations have explained

these changes by a quasiperiodic route to chaos for the variation of the feedback

level /2/ as well as by an intermittency route /3/ for the variation of the

injection current.

In the present contribution, we analyze the regime of the intermittency. For

the relevant parameter regime the time evolution of the light intensity (Fig.1)

shows typical break down events and a subsequent relaxation process. These

break down events are called low frequency fluctuations (LFF) because their

frequency is small in comparison to the external cavity resonance frequency. We

have found a transition and a coexisting regime of two different types of LFF

(Fig.2) characterized by the dependance of this characteristic frequency on the

injection current. On the base of these data and the data shown in Fig.1, we
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propose the coexistence of two different kinds of LFF (type I and type II LFF).

The Type I LFF are charcterized by intermittant break downs of the light

intensity /3-5/ while the characteristic frequency of the type II LFF is

determined by the relaxation oscillations of the external cavity semiconductor

laser /4,6/.

In the present contribution we will report on investigations of the transition

regime between the two types of LFF (Fig.2) in order to study its dynamical

origin. For this purpose we have characterised the attractors belonging to type I

and type II LFF by evaluation of their correlation dimensions. We find a

correlation dimension of about 11 for type I LFF and between 5 and 6 for type II

LFF. Consequently, the system undergoes a transition between ultra-high

dimensional motion (C2 - 11) and a high dimensional attractor (5 < C2 < 6). The

transition itself is interpreted as a subharmonic bifurcation with irregular

switching between the two branches of the corresponding hysteresis.
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Although semiconductor lasers are inherently large-linewidth and low-power devices,
these limitations can be overcome by coupling their output to another laser or resonator. A
coupling delay, however, is known to cause an extreme loss of coherence for a self-coupled
diode laser above a critical coupling level. I Unstable operation has also been observed recently
in a system of two semiconductor lasers mutually coupled at a distance, 2 a phenomenon
referred to as overcoupling. In this paper, systematic spectral and coherence measurements are
described for a single, self-coupled diode laser and two mutually coupled lasers, demonstrating
extreme dynamic instability at moderate coupling levels.

Fig. 1 displays the optical spectrum of a CSP diode laser with feedback from an
external reflector 40 cm away. The vertically displaced traces represent increasing levels of
coupling, in which _2 denotes the fraction of power transmitted one way through the coupling
region. Stable operation is interrupted above a critical coupling level, manifesting in spectral
broadening and a reduced coherence length, a phenomenon known as coherence collapse.
Sidebands, separated from the carrier by the relaxation resonance frequency are clearly visible,
while the spectrum pulls to low frequencies at stronger coupling levels. Numerical
simulations, based on coherent rate equations, account for all these features. It is now
generally accepted that the coherence collapse represents a state of deterministic chaos.

While coherence collapse is well documented, we found that mutually coupled diode
lasers exhibit similar spectral broadening and reduced mutual coherence. Here, in order to
quantify the degree of phase-locking, the laser outputs were interfered. The depth of
modulation (visibility) of the resulting fringe pattern measured the mutual coherence between
the lasers. The phase of the optical interaction was controlled by varying the laser separation
in fractions of a wavelength. In Fig. 2, error bars indicate the extremes in recorded visibility
at a given coupling level for two mutually coupled TJS diode lasers separated by 45 cm.
Relatively high visibilities are obtained at extremely small coupling levels, indicating that a
substantial degree of coherence has been established. Below 62 = -60 dB, maximum
visibilities are limited by spontaneous emission noise, while the large variation is a result of
mode hopping. High quality phase-locks, independent of o',, are confined to a = 10 dB
"window" near E2 = - 50 dB. Dynamic instability rapidly degrades this highly coherent state,
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for F2 larger than -50 dB. The drop in visibility is accompanied by spectral broadening similar
to Fig. 1.

The unstable operation is well accounted for by single-longitudinal-mode coupled rate
equations describing the time evolution of the slowly-varying complex electric field amplitude
E and carrier number N in each laser cavity:

dij (t [_I G(N, P ))-I + ia GANij Ej t) + IcEk(t - -)exp(-i~oj) + Ep (t) (1)

d 2 () _P d
d( = i _ -G(N) _ Pj(t) j # k = 1,2. (2)d t Ir .

where the absolute squared value of the electric field amplitude gives the total number of
photons, P,, in the lasing mode. J, denotes the pumping rate, G is the stimulated emission
rate and AN =- Nj - Nh is the deviation in carrier number from threshold. The lasers are
taken to be identical, characterized by photon lifetime rp, carrier lifetime rt, free-running
angular oscillation frequency (oo and linewidth enhancement parameter a. t is the coupling
delay and E4, describes spontaneous emission noise. The coupling coefficient Kc is related to
e by

1 (1- R) (3)

where rD is the round-trip time in the diode laser, andR is the power reflectance of the output
facet. Parameters necessary for the preceding model were measured for the experimental
lasers; those of a ML510la TJS device are compiled in Table I.

Fig. 3 compares numerical simulations of overcoupling to the data in Fig. 2.
Visibilities, at selected awoj, were determined via time series integrated from rate equations (1)
and (2). The rapid decline in mutual coherence is well represented. With a = 0, however, the
visibility was found to remain higher than 0.9 for all coupling levels shown in Fig. 3.
Stability analysis of the rate equations has shown that the collapse in mutual coherence is
initiated by the system's inability to damp relaxation oscillations due to the optical coupling,
although the full nonlinear rate equations are necessary to predict the severity of instability.
Note that the lasers are truly incoherent only near E'=- 30 dB. (Experiment does not
indicate the partial recovery in coherence above -30 dB, due to the emergence of multiple
longitudinal diode modes.) Time series have indicated that in regions of partial coherence the
system undergoes rapid transitions between its stable states. Below -30 dB, these transitions
predominantly occur between modes which minimize fluctuations in the phase difference
between the lasers, while above this level the dominant modes possess the minimum threshold
gain. The latter modes oscillate at frequencies negatively detuned from 4o), explaining the
frequency pulling in Fig. 1. Collapse in coherence is interpreted as a transition between these
distinct stability regions.

The authors gratefully acknowledge the support of the Air Force Office of Scientific Research
and the National Science Foundation.
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Modulated lasers have been investigated for over a decade now, c.f. r•f. [3] and
references cited therein. Periodic as well as chaotic types of operation have been ob-
served. In this paper we put forward a mathematical technique to calculate lower and
upper bounds for the modulation strength which is needed to sustain a periodic large
amplitude output.

A simple set of rate equations for a modulated laser is given by
d 71

-d = n - (A, + ((n - no))S + .J + .J,(t) (1)dt

d--S (71 - ,1o),S , (2)

where n is the inversion density, A,, and A, are the reciprocal inversion- and photon decay
times, ý is the gain coefficient, S is the photon-density, .J0 and .J1 are the dC- and the
time-dependent component if the injection current, and no is the stationary inversion
density. The stationary photon density .So, So = (.Jo - A,, no)/A,, the stationary inversion
density, and the relaxation-oscillation frequency WR, wR = R AD- {, are used to rescale
the rate equations by introducing it, f, and t' according to , , f = o "0, andwOR ?to

P = WR t. Doing so, we obtain:

n -2YRi = 3h(. -1) - ( I - 1) + .J,(t') (3)

S = i •, (4)

where the (lot d(enotes the operator -TF", Further we introdhuiced /1, m,

and JI: f3 = R, 2"• - R + /1, and *Jit') = ',) o-,,,_,0"
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In order to see the structure of (3) and (4) somewhat better we transform them to
the variables a and v which are given by a = log S, and v = log( it + 1). This leads
to

= (e3"-1) (5)
b=_0

i=- (e' - 1) + i 1 - (2 YR + /3 1) 1 (6)

Obviously, eq.(5) and (6) are the equations of motion for a damped, driven, nonlin-
ear oscillator. The nonlinear oscillation itself is given by the Hamiltonian )H(v,a) =
3-2(e3 - /Iv - 1) + (e' - a - 1) + ao]1 . A similar observation was made in ref

[I]. However our Hamiltonian is more general: one easily sees that in case 3 v < 1 and
•l = 0, 7" can be approximated by the Hamiltonian for the Toda oscillator which was
discussed in ref[1]. In case "YR = 0 and = 0 the solution aE of (5) and (6) with period
time TE = 2 7r /Q and initial condition 6E 0 can be written as aE = e

An algorithm to calculate the ak for some given value of Q is given in ref[2].
Now we introduce the 'energy' E(t') according to

E(t') = 3-2 (e (t'(t') _ /3 V(t') - 1) + (e"(t') - a(t') - 1), (7)

for which one easily finds E = f+• {-2-R + J, (t') }. This equation can be read
as the rate of energy exchange of the oscillator due to damping and a driving force.
Provided this exchange per period is small, one can use the solution oE of the free
running oscillator as a zeroth order trajectory in a perturbation scheme, which will give
us an analytic al)l)roximation for the Poincar6 mapping function.

To see how this works out we consider a periodic modulation .J (t') = cos w jV',
where j, is the modulation index. Let rj(t') be a solution of (5), (6) for this J1. Since
we need two initial conditions for integrating these equation, the phase space is 2-
dimensional. Hence the solution for a and v calI be represented as a time-parameterized
curve in this phase space. The interesting property is the attractor of such a trajectory,
viz. the trajectory it approaches when t - oo. For our driven dissip)ative system this
attractor must be either locked periodic or chaotic.

Here we will study the locked l)eriodic attractor. The period time T, = 2 •'/w, must
be some multiple of 2 7rl/j. At the same time an integer number of outl)ut cycles is
generated. If it is possible to approximate the outl)ut by an orbit of the Hamiltonian
system, T, must also be a multiple of 2 7r/l. So we have

T, = ,t2ir/ww = n2ir/Q; n, m. E LN. (8)

Instead of representing the system in the phase space (a, v), we consider successive
times tý at which a(t') reaches a minimum and we represent the system by the value of
E and the phase 'pj of Jl at this time, i.(,. by the points (E = E(a(t',)), ps = wj V'i).
We are now dealing with the phase space (E, Loj) which cai conveniently be used when
looking for stationary orbits.
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The problem we have tackled is the question under what conditions the attractor
characterized by (8), with wj, n, and ni fixed, exists. We have been able to find an
answer which states that:

There exist an upper and a lower bound for the modulation index jI. Below
the lower bound, the 'energy' supply is not sufficient to compensate for the
dissipative losses; above the upper bound the periodic attractor becomes
unstable, presumably starting a period doubling route to chaos. We have
obtained expressions for these upper and lower bounds as well as for the
position of the attractor in phase space.

In practice, when all parameters are fixed, it is possible that more than
one attractor exist. So we found a new type of multistability, characterized by
different values of n and rn in (8). A numerical simulation indeed confirmed
this multistable character.

As an example of such a numerical calculation fig.1 shows three attractors in the
(a,v) plane; fig.2 displays the corresponding output. These figures were calculated for
2 YR = 0.064, /3 = 0.035, wj = 0.4, and ji = 0.7.

-S.0 0.0 5.0 0.0 20. 40.

fig. 1 fig. 2
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Semiconductor lasers are typical class-B lasers in which the decay rates obey yrp, y << y , where yp, y.
and y are the decay rates of the photons, population inversion and polarization, respectively. Therefore
an isolated semiconductor laser is well described by rate equations with only two independent variables
(photon number and carrier population) so that chaos is not observed. Here we show two different
geometries to make chaos feasible in a semiconductor laser system. The results clearly demanstrate the
origin of instability in the semiconductor laser, the interaction in the nonlinear laser medium between
undamped relaxation oscillation (which expresses the energy exchange between carrier population and
photons) and some external modulation (which may include optical feedback).

In the first experiments we used a commercial CSP semiconductor laser (Hitachi HLP1400) with an
external reflector which provides weak optical feedback (<0.1% in power) to the laser. This optical
feedback modulates the carrier population N and the optical field (both intensity I and phase )) in the
laser resonator and also causes coupling between them. Using this geometry a rich variety of dynamic
behavior has been observed /1,2/, but the physical basis for the instability was hitherto unclear. We show
here the measured intensity noise spectrum by changing system parameters, mainly by changing
feedback levels (Figs. 1 and 2). For increasing feedback level the relaxation oscillation is undamped at
first, then the external cavity modes are excited. Fig. 1 shows that chaos can be reached through a pure
period-doubling route if the relaxation oscillation frequency vR remains an integer multiple of the
external cavity mode spacing Vext, i.e. vR=nvext (n: integer). The fundamental period corresponds to the
roundtrip time of photons in the external cavity (T=l/vext). Fig.2 shows the quasiperiodic route to chaos
observed when vRA:nvext. The latter situation is found more frequently in the experiment. The optical
spectra are also monitored during the measurements, clearly showing symmetry breaking in the system.

Although the pure period-doubling route to chaos happens only in a narrow range of system parameters,
initial period-doubling is found in quasiperiodic behavior (Fig.2), indicating that period-doubling is a
fundamental process in the system. For most system parameters we see a mixture of period-doubling and
quasiperiodicity, culminating in chaos.

The above experiment has been modeled theoretically /3/ using a rate equation approximation including
coupling between the intensity and phase, weak feedback and gain saturation effects. The rate equations
are integrated numerically to obtain the time series of the three variables N(t),I(t),O(t) which are further
utilized to calculate the autocorrelation function, correlation dimension and other fundamental dynamical
properties. Period-doubling and quasiperiodic routes to chaos are obtained in the theoretical analysis, in
good agreement with the experimental measurements /4/.

The phenomena described above are easy to understand in the general context of nonlinear oscillators:
the interaction of two or more modulations applied to a nonlinear oscillator can cause chaotic behavior. If
the two modulation frequencies have a rational ratio, frequency locking may result and period-doubling
will occur when the system symmetry is broken. Otherwise the two incommensurate modulation
frequencies will beat together, and for increasing modulation depth more new frequencies corresponding
to combinations of the existing frequencies will appear because of nonlinearity of the oscillator. Both
processes cause chaos in the oscillator. In our laser system only one external modulation is added due to
the external cavity modes, but the intrinsic relaxation oscillations are also undamped by the optical
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feedback, so in effect two oscillations are applied to the laser system, and interaction between them

causes the chaos.

A *ý ýA

Vext vR-SVext -4

B B

5Vext -(VR-Vex&2)

Vext/2-.$

SC~w
-•,Vext/4

0 5.5GHz 0 5.5GHz
-> V ->V

Fig. 1 Measured intensity power spectra for the Fig.2 Measured intensity power spectra for the
laser diode with an external reflector. laser diode with an external reflector.
Lext =_ 9cm, pump current I/Ith _= 1.38. Lext =_ 15.5cm, pump current W/th _ 1.59.

Feedback level was increased from Feedback level was increased from
AtoD. AtoD.

Armed with this understanding, we set up another experiment to investigate the dynamic behavior of an

anti-reflection (AR) coated semiconductor laser in an external cavity with a grating reflector. The

residual reflectivity of the AR-coating on the internal facet was less than 0.1%. A solid etalon with FSR

100 GHz and finess = 30 was inserted in the cavity to create strong dispersion and hence longitudinal

mode selection. The external cavity mode spacing was chosen as = 520MHz so that the envelope of the

etalon resonance curve could include several cavity modes, therefore multi-mode behavior was possible.

At first the cavity detuning was chosen so that the cavity resonance was at the center of the etalon

resonance curve. In this case a single external cavity mode was obtained (Fig.3A) and maximum output

power observed. As the external cavity was detuned from the center of the etalon resonance, a sharp peak

at several tens of MHz appeared (marked in Fig.3 as vR) which was accompanied by a low frequency

component (marked as v, in Fig.3) and its harmonics. With different cavity detuning the value of VR was

almost constant but vI changed, so that different ratios of vR to vI were obtained. The corresponding

intensity spectra showed quasiperiodicity (Fig.3D) or period-doubling (Fig.3C). The corresponding

optical spectra showed multi-mode behavior and different ansymmetries. Chaotic behavior appeared

upon further cavity detuning(Fig.3E).
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In the experiments vR could be changed most effectively by adjusting the pump current, while vI could
be varied mainly by setting the cavity detuning. This suggests that vR was the relaxation oscillation
frequency of the external cavity laser, and vl was the beat frequency between different cavity modes;
these modes had unequal mode spacings because they were located at different parts on the etalon
dispersion curve. Further experimental measurements are continuing.

Both experiments agree in associated indicating strongly that the origin of instabilities in a semiconductor
laser system is the interaction between undamped intrinsic relaxation oscillation and same external
modulation.
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Injection locking phenomena in oscillators has been studied in many laser systems (see for

example [11) including semiconductor lasers [2]. The vertical-cavity surface-emitting laser (VCSEL)

provides an interesting system to investigate injection locking behavior due to its short cavity length (- I

Jlm), which also results in a single lasing cavity longitudinal mode. We have studied locking dynamics

in a highly noisy laser system in the strong external injection regime and observed relaxation oscillation

frequency generation of up to 50 GHz.

The VCSEL is grown by molecular beam epitaxy: (100) GaAs substrate, I Jim GaAs buffer,

bottom mirror consisting of 22.5 periods of alternating quarterwave layers of AlAs and Al0o 127Ga0 .s73As,

3X GaAs gain medium, top mirror consisting of 17 periods of AlAs and AIGaAs. The -0.99

reflectances result in a single transmission peak of width - 0.5 nm within the - 830 nm to 920 nm mirror

stopband. Excitation of the VCSEL was by optical pumping using a cw dye laser. The injected laser

beam was produced by another cw ring dye laser frequency stabilized to - I MHz linewidth.

When the injection frequency approximately coincides with the peak of the VCSEL lasing and

the injected power exceeds 0.06 mW, new frequencies appear labeled 13 and 14 in Fig. 1. The separation

Au = Pi~j - P/3 between the injected frequency Pinj and the new frequency P3 varies strongly with the

injected power Pi. . following Au(GHz) = 11.15 + 20.3 P,(mW) for 0.06 <Pinj <2.7 mW and is

of similar magnitude to relaxation oscillations recently reported for a highly excited VCSEL 131.
Previous studies have reported enhanced relaxation oscillations with weak injection [41 but not of the

strength or frequency separation reported here. As in other studies [4] we observe asymmetry in the

locking range as the injected signal is detuned, with larger locking range on the negatively detuned side.
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To understand the mechanism of the injection locking in short cavity semiconductor lasers, we

have calculated power spectra and steady state properties by solving the coupled equations [5]

dE = (g-x)E + C tFcos(O)
dt 2Ln~n)
dO = A + Adg AN- c tFsin(O) (1)
dt dN 2Ln(N)
dAN ryN 2gn(N) I

where the rate equation approximation is employed. ca in Eq. (1) is the linewidth enhancement factor.

In addition to Eq. (1), we also assumed linear dependence of the optical refractive index, n(N), and the

gain, g(n), on the carrier density, N. As a first step, we obtained the steady state solutions. There exist

three possible steady states for low injection intensities. However, as noted by Spencer and Lamb [51,

the lower two branches of the solutions are not stable. The existence of the asymmetry for different

detuning was verified in the steady state calculations.

We also integrated Eq. (1) to obtain the laser field strength E, and the phase 0, as functions of

time by using the Runge-Kutta method. Given the injection detuning frequency A, we found that the laser

emission is locked into the injection frequency if the injection intensity F, is larger than a certain critical

intensity. E and 0 reached their corresponding steady state values within the time of I/ wR, where W'R is

the oscillation frequency in the absence of the injection. The Fourier transform power spectra of the

injected-laser system show new frequencies other than the injection frequency or the freerunning laser

frequency when the VCSEL is not in the locked state.
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Figure 1. Unmodified and modified frequency spectra of the VCSEL lasing. (a) VCSEL lasing without
injection: peak at 874.5 nm with and output power of 0.1 mW (well above threshold). (b)-(d) VCSEL
output with injection at a frequency slightly above PVCSEL and with power (mW) of (b) 0.23, (c) 1.2, (d)
2.5.
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Recently, applicability of complex dynamics to information storage (memory) has been discussed
in nonlinear optical systems. Spatial chaos memory was proposed in a bistable pixelsl' and in a
coup)led bistable chain. 2 Dynamic memory in a delayed feedback bistable system was demonstrated
experimentally. 3 On the other hand, Otsuka demonstrated that ma = (N - 1)! (N: number of
oscillating modes) coexisting dlynamical spatial patterns, i. e., antiphase periodic motions, can be
selectively excited by ap)p)lying seed signals to the modulated multimode lasers whose modes are
globally coupled through spatial hole burning.4 In this paper, we discuss the detailed bifurcation
scenario, featuring clustered states and chaotic itinerancy5 among destabilized clustered states.
Also, factorial dynamical pattern memory associated with antiphase and clustered states as well as
the effect of sp)ontaneous emission on memory operation are demonstrated by numerical simulations.

From linear stability analysis, an N-mode free-running laser is found to be always stable in
time and the relaxation oscillation at wr = [(w - I)/Trp]1/2 (w: relative pump, r: population
lifetime, rp: l)hoton lifetime) is damped out. If the modulation depth ?n increases to where the
pump power drops below the threshold during part of the pump modulation cycle, the total output
behaves just like a single mode laser and exhibits spiking mode oscillations at w, < w,, while each
emitter exhibits N-alternative spiking pulsations at w,/N, resulting from winner-takes-all dynamics
based on the cross-saturation mechanism. This is manifested as the antiphase states in modulated
multimode lasers.' For small N, the antiphase states are globally attracting and are obtained after
short transients for arbitrary initial conditions.

When N increases, the basin of attraction of antiphase states shrinks very rapidly and an-
tiphase attractors tend to coexist with chaotic orbits in the phase space. In addition, clustered
states ap)pear, where the system breaks into p-clusters which exhibit different synchronized motions.
There coexist at least min = N!I/NI!N 2 ! .... Np! clustered states in the phase space, where Ni is the
number of modes b)elonging to tihe i-th cluster. The bifurcation diagram for a five mode laser is
shown in Fig. ](a) as a function of modulation frequency, where w0 = 2.7, m = 0.74, r/r, = 1000,
and spontaneous emission coefficient ( = 1.2 x 10-7 are assumed. In the high modulation frequency
side near w,, syn*chronized relaxation oscillations are realized. When the modulation frequency is
decreased, clustered states like Fig. 1(b) appear. Figure 1(b) shows a 2-cluster state [(1,2,3),(4,5)].
It is interesting to note that the total output exhibits the alternative spike pulses of the spiking
mode and the resonant relaxation oscillation which was observed experimentally in a modulated
singie inodc LNP laser.6 This implies that the dynamics of individual modes are self-organized such
that the total output behaves just like a single mode laser similarly to antiphase states. It should
be note(d that these stable svnchronized relaxation oscillations or stable clustered motions coexist
with both the chaotic attractor and antiphase states with different basins of attraction in the phase

space.
If the modulation frequency is (lecrease(d further, clustered states are destabilized and then

the system exhibits self-induced switching among coexisting destabilized clustered motions (chaotic
itinerancy5') leading to a global chaos (C(C in the figure). This process repeats when the modulation
frequency is decreased as shown in the figure. Figure l(c) shows an example of chaotic itinerancy at
rwi = 19.5, where at point A, for example, the switching from a destabilized [(1, 4, 5), 2, 3] cluster
to a destabilized [( i, 3, 4), 2, 5] cluster is occurring.

The basin of attraction of antil)hase states for N = 5 is extremely small in this parameter
range and it is hard for the system to find it. ilowever, one can assign tihe system to the desired
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antiphase dynamics states by injecting small light pulses [; (laser pulse height)/60 I to (N - 1)
modes in tile desired sequences as seeds at the time interval of 27r/w, only during the (N - 1)
modulation cycle in tile region indicated iii Fig. ](a). Examples are shown in Fig. 2 for ru;,,, = 35.
In Fig. 2(a), the systeem shows chaotic evolutions initially and is switched to the antiphase state by
the seed pulses. In the case of Fig. 2(b) with slightly different initial conditions from Fig. 2(a), the
system is attracted by tile 2-cluster state [( 1,2,3, 4), 5] after some transients, and is switched to tile
antiphase states by seed pulses. These results imply that chaotic, cluster and antiphase attractors
indeed coexist in the phase space for Tr,, = 35, and switching among them can be established by
injection seeding. Moreover, even switching from one antiphase state to another is possible. 4

Next, let us consider the assignment to desired clustered states. From the numerical analysis,
it is found that direct assignment to the desired clustered states is possible when "key patterns"
of the desired clustered states are applied to some modes as seeds in the first modulation cycle.
Examples are shown in Fig. 3 for r,',,, = 25. In Fig. 3(a), the system is initially in the chaotic
attractor and the chaotic (dyniamics are switched to a 3-cluster state [(1,2, 3), 4, 5] by applying "key
patterns" to k = 1, 2, and :3 modes, where seed pulse height sk,(k = 1,2,3) is 0.2 and pulse width
is 0.06. In Fig. 3(b), the system is switched to a 3-cluster state [(1,4,5),2,3] by applying "key
patterns" to A- = 2 and :1 modes, where seed pulse heights are . = 0.2 and s3,, = 0.1. Htere, other
modes are self-organized such that tile total output behaves just like a single mode and exhibits
a:ternative sl)ike pulses similar to Fig. 1(b). Iti other words, the desired clustered state can be
,ssocifatitcly memorized by injection seeding of "key patterns" during one modulation cycle. It
is very likely t hat injection seeds give a driving force to the system such that the trajectory will
fall on the basin of attraction of these periodic states surrounded by a chaotic sea through saddles
(homoclinic crossing). Such an assignment process cali be called secding-assistcd crisis.

The basin of attraction of antiphase states depends on the spontaneous emission coefficient
. In general, if ( is decreased, tihe basin of attraction increases as a result of the reduction

of fluctuations due to the spontaneous emission term cno in the rate equation, where no is the
population density. For ( > r5 x 10-8, antiphase attractors are destroyed for N > 6. In the case
of N = 6, antiphase attractors are divided into N = 5 antil)hase motions and the chaotic motion.
However, the suctiiaI pIla~yhdiack of the "forced" N = 6 antiphase motions which do not exist
previously iii the phase space, call be accomplished by applying clock optical pulses to the first
firing mode in addition to tile injection seeds. The result is shown in Fig. 4, where the antiphase
state is destroyed into N = S antiphase motion and chaotic motion when the clock pulse is cut.
When the spontaneous emission coefficient ( is decreased to below 5 x 10'. time N = 6 antiphase
states (m, = 120) have a finite basin of attraction and one call assign tile system to these antil)lhase
states without applyiing clock pulses. If ( is decreased further to < 1.2 x 10-', which is all attainable
value in solid state lasers4, sequential playback by clock pulses (like Fig. 4) is possible even for N

=7 (, i. e., mt, = 720).

Assignment to periodic states iii the present system is attractive in terms of application to
a memory vf fractional -dynani'al spatial patterns" resulting from automatic parallel processing
among oscillating modes with cross-saturation. The memory capacity in the present system is
expressed by C, = loq(N - I)!/Iog2 for antiphase states and (C, = log( N!/N 1 !N2 !...Np!)/1og2 for
p-clusters states. This implies that the memory capacity per mode exceeds ordinary 1-bit binary
inelnory.
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Although coherence properties of semiconductor laser arrays have been
the subject of extensive investigations for many years [1], solid state
laser arrays are only recently receiving much interest. The two systems

are described by similar dynamical equations, but the solid state laser
dynamics occur on much slower time scales. In addition, spatial coupling
is varied more easily in a solid state array. The solid state array then
presents some advantages as a tool in investigating coupled dynamical
systems. In this paper we study the coherence properties of two spatially
coupled Nd:YAG lasers.

Our laser system produces two parallel, spatially separated lasers

in a single Nd:YAG crystal, with each laser excited by its own Argon pump

beam. The symmetric cavities consist of two plane end mirrors and rely
upon positive thermal lensing in the Nd:YAG active medium for optical
stability. The coupling between the two lasers is varied by changing the
amount of overlap between the two lasing fields. This overlap is a
function of the lasing spot size and the separation of the two pump beams,
L. The coupling strength can be varied continuously simply by changing the

spacing between the two pump beams.
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Intrinsic noise and detuning between the output beams act to
destabilize the coupling. The detuning between the uncoupled beams has

been measured to be in the range 25 - 100 MHz. In order to determine the
mutual coherence of the two output beams, we superimpose them at a
small angle and measure the visibility of the interference fringes. For
large L, the beams are completely incoherent. For small L, the two beams
are phase-locked and produce a visibility approaching 1. The transition
from incoherence to coherence occurs abruptly in a narrow range of

separation of the two lasers. The phase-locked beams are observed to
lase with a n phase difference.

We describe our system in terms of the rate equations for the slowly
varying complex amplitude of the electric field and the population
inversion for each of the beams. We have included a coupling term

between the two electrical fields and a Gaussian white noise term to
model random fluctuations in the laser fields. The value of the coupling
coefficient is determined by the overlap integral of the two beams.

In the steady state, neglecting the fluctuations of the intensity of each

beam, the visibility can be simply expressed in terms of the phase
difference between the two beams. When the intensities of the two beams
have the same mean value, it is possible to reduce our model to a closed

equation for the phase difference of the two output beams. This equation
corresponds to the Adler equation [2], which has been widely used in the
study of coupled oscillators, plus a stochastic term which describes the
fluctuations. In the limit of small noise and for values of the coupling
much larger than the detuning, the two lasers are phase-locked and
mutually coherent. For small values of the coupling constant the phases
of the two beams become uncorrelated.

We have compared the experimentally measured visibility for different

separations between the pump beams with numerical simulations of our
simple model and obtained very good agreement.
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In this paper we present numerical solutions for a partial differential equation (PDE)
model' for the dynamics of a twin stripe semiconductor laser array. The model includes
carrier diffusion and the effects of propagation. A coupled-mode ordinary differential equa-
tion (ODE) model2 is then derived from this PDE model. The two models are compared in
predicting the dynamical behavior of the laser array. We obtain good qualitative and quan-
titative agreement between the two models. The results obtained can be readily extended
to larger arrays.

The ODE model greatly facilitates the determination of the domain of stability of the
device, the conditions and nature of bifurcations leading to instability and of subsequent
bifurcations.

We start with the evolution equations for the field ampliude X, in arbitrary units, and
carrier densities Z, in normalized units.

OX = iCA7/,.(x)x + (1- iR)ZX + iL O (1)
Or 02aT OZ i02Z

S= p(x) - Z - (1 + 2Z)IX12 + L 2 9 (2)

where C is a constant dependent on material and waveguide parameters, R is the antiguiding
parameter, L O2X/OX2 allows for diffraction and Ar7eff (x) is the lateral built-in effective index
profile. T is the ratio of the carrier lifetime, rT, to photon lifetime, rp, and Le is the diffusion
length of the carriers. The lateral coordinate is x and r is the time normalized to rP. The
injection current p(x) is assumed constant under the stripes and zero elsewhere.

In the coupled-mode formalizm, each element of the laser array is considered separately
and inter-element coupling is accounted for through coupling coefficients. With the injection
current about 2.5 times the threshold current and with typical parameter values for an
A1GaAs laser, we see that gain guiding is significant in addition to the index guiding provided
by Areff(x). With this in mind, we take the single element dielectric profile as CA77eff(X) -

(i + R)Zo, and the single element field as X0, where (X0 , ZO) is the steady state solution of
Eqs. (1)-(2). The change in the single element dielectric profile due to temporal instabilities
is expected to be small and can be taken as a perturbation. Xo and Zo are readily obtained
by advancing Eqs. (1)-(2) in time, for a single stipe, long enough to reach a steady state
starting from an arbitrary field and gain profile.

The usual coupled mode expansion is now made for the total field Et in terms of the
laterally shifted versions of the single element field X0.

E,(x, r) = a,(r)Xo,(x) + a2 (T)Xo2 (X). (3)
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The time dependent total carrier profile, Zt, can be written as

Zt(x,,r) = Zto(x) + (x, 0), (4)

where Zto can be expressed in terms of Zomn, the laterally shifted versions of Zo. As noted
earlier I (x, r)I <« IZto(x)1. We further assume that

z(x,r) = Z1(r)XO(X)+ Z2(T)Xo2(X). (5)

With Eqs. (1)-(5), the coupled mode equations can be written down.

2 Oa,, 2

E cnm 97. = (1 - iR)azn + i E k,•,ma, (6)
m=1 m=1

T = P - (1 -6)z. - (1 + yzn)lan 1. (7)

with n = 1, 2. 5 and -y are constants independent of the separation between the elements of
the array and are integrals involving Xo and Zo and cem are modal overlap integrals close to
the identity matrix elements. The coupling constants knm and the pump parameter P are
given by

knm = JXgnXom (Ti(x)- tm(x))- (i + )(Zt(x)-Zom(x))Idx, (8)
2 ,2 Zto) x

= J(p(x) - Zto + LdX , (9)

where i?(x) is the total built-in refractive index and qim is the built-in refractive index for a
m'th guide alone. The pump parameter P depends upon the separation between the lasers
because of coupling between the lasers through carrier diffusion.

The dynamical behavior of the laser array according to Eqs. (1)-(2) was obtained by
advancing an initial field and carrier profile in time using a time-splitting finite difference
scheme. The width of the stripes are 4pm, R = 3, and A7rl, = 0.01. The other parameters
are as given in Ref. 1. Two such sets of simulations, for varying center to center separation
S between stripes, were performed for L, equal to 0 and 3pm. When L, = Opm, the array
loses the stability of the out of phase steady state, through a (generalized) Hopf bifurcation,
in favor of self-sustained oscillations at S = 9.Opm. As S is decreased further, the dynamical
behavior of the array becomes more complicated and eventually it becomes chaotic through
the quasiperiodic route. On the other hand when L, = 3pm, the stability of the out of phase
steady state is lost at S = 8.4pm. With further decrease in S the system becomes chaotic
through a sequence of period doubling bifurcations.

The coupled-mode equations, Eqs. (5)-(6), support both in-phase and out of phase
equilibria. The stability of these equilibria is determined by the eigenvalues of the linearized
rate equations corresponding to Eqs. (5)-(6). When S _< 13.2pm, for both Le = 0 and
3pm, the in-phase state is stable while the out of phase state is unstable. At this value of
S a steady state bifurcation leads to the exchange of stability of the two states. As S is
decreased, the out of phase steady state loses stability at S = 8.9 and 7.8pm for L, = 0
and 3pm, respectively. The qualitative agreement between the PDE and the coupled-mode
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models is good as far as the nature of bifurcations and the routes to chaos are concerned.
For Le = Opm, there is also good quantitative agreement. The quantitative agreement is,
however, less than desirable for Le = 3pm. This is primarily because for this case the stripes
are coupled not only by their evanescent fields but also through the exchange of carriers.
Diffusion of carriers result in the carrier peaks of the two stripes being pulled towards each
other resulting, in turn, the modal fields being pushed out because of index anti-guiding.
The amount of pulling (pushing) depends upon the separation between the stripes. A more
refined coupled-mode expansion, corresponding to Eq. (3), is needed for this case.

In conclusion, we have reduced the PDE model for the dynamics of a semiconductor laser
array to a coupled-mode ODE model using a basis for the coupled-mode field expansion
which incorporates both index guiding and gain guiding. For diffusionless carriers, there is
good qualitative and quantitative agreement between the two models. However, when inter-
element coupling of carriers is allowed through diffusion, the agreement is only qualitative.

References:
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The space-time dynamical behaviour of multi-stripe index/gain guided semiconductor

laser arrays and broad area lasers is studied using the semiconductor Maxwell-Bloch laser

model including transverse diffraction of the counterpropagating optical fields and transverse

diffusion of the excited carriers. Our results confirm that evanescently coupled multi-stripe

lasers are a fascinating manifestation of spatio-temporal complexity in spatially extended

nonlinear systems. Stabilization of the laser output can be achieved by injection-locking the

array with a weak external injected signal. The broad area laser shows random intensity

filamentation in free-running mode and can be stablized to produce high power output by

using the unstable resonator configuration for transverse mode discrimination.

In the usual phenomenological semiconductor laser model approach a linewidth enhance-

ment factor is introduced in an ad hoc fashion. The magnitude of this factor plays an

important role in promoting instability in evanescently coupled semiconductor laser arrays

[1, 21. The issue can best be resolved by appealing to a fundamental many-body theory [3]

of the interaction of light with semiconductor media. An obvious advantage of such a theory

is that one can dispense entirely with ad hoc parametrization and compute the material

parameters directly from first principles.

In the present paper we will study the space-time dynamics of the semiconductor laser by

numerically integrating the time-dependent, fully transverse dimensional partial differential

equations while using the many-body semiconductor theory to obtain the carrier induced

gain, refractive index and nonlinear carrier diffusion coefficient changes. To investigate

the validity of the phenomenological approach, we use the many-body theoretical data to
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construct the usual phenomenological model and study the dynamics of the laser model.

By linear curve fitting the gain and the refractive index changes at the laser threshold we

obtain parameters that can be used in the phenomenological model. Our studies show

that these parameters depend not only the properties of the material, but are also strongly

dependent on the laser device and working conditions. In the strong index guiding case,

the phenomenological approach gives qualitative agreement with the many-body theory. For

weak index guided or gain guided laser arrays and broad area lasers, the phenomenological

model fails to describe the complex dynamical behavior of the laser system.
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Arrays of semiconductor diode lasers are promising devices for applications
that require high optical power from a laser source (high-speed optical

recording, high-speed printing, free-spae~e communications, pumping of solid-

state lasers) [1]. Experimental and numerical studies of arrays consisting

of a small number of lasers have shown that they are unstable devices and
may exhibit a large variety of spatio-temporal responses [2-5]. In order to

control these instabilities by various external mechanisms (injection

locking, periodic modulations), systematic bifurcation studies are needed.

The laser equations are however stiff and accurate solutions for a large

population of lasers require long computation times. Asymptotic methods

based on the limit of weak coupling [6] also fail to provide simple phase

equations because the semiconductor laser is not a limit cycle oscillator.

We have recently reformulated the laser equations as a weakly perturbed

system of coupled conservative oscillators which eliminate part of the

stifness of the problem and allow an analytical study of the first Hopf
bifurcation as the coupling strength is progressively increased. If N is

even, the Hopf bifurcation is simple and corresponds to a transition from a

nonuniform steady state to a time periodic standing wave solution [7].

However, if N is odd, bifurcation to periodic standing and traveling wave

solutions are both possible. This multiple bifurcation problem is difficult
analytically but can be simplified if we consider the limit N large.

Specifically, we determine small amplitude periodic solutions of the

following equations describing the evolution of N coupled semiconductor

lasers
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dZ 2 (2)2Z _ P - - (i + 2Z Y1  (2)

In these equations, the variables Y and Z are defined as the normalized

electrical field and normalized excess carrier density in the jth laser,

respectively. The basic time a is defined as a - t/r where rp denotes the

photon lifetime. The parameter p is the normalized excess pump current (p

0.05), q is the coupling strength (q = 10-3-i0"4), a is the linewidth

enhancement factor (a = 5) and T is equal to the ratio rs/rp where rs is the

spontaneous carrier lifetime rs (T - 2xi03 ). Typical values of these

parameters are shown in parentheses and suggest the scaling q - O(T" ) << 1.

As Otsuka [5], we consider a ring geometry (looped Coupled Waveguide Lasers)

and introduce periodic boundary conditions. The bifurcation analysis is

easier for the ring geometry but can be extended to the more interesting

case of fixed boundary conditions. We determine the bifurcation diagram of

the periodic solutions by investigating the limits

q - O(T"I) 0 and v - O(N"1) + 0 (3)

where v denotes the amplitude of the time periodic mode. In [8], a system of

partial differential equations were obtained for solutions depending on time

t and a slow space variable ý - J/N. By using a different method, we

determine a solution that depend on time t, the position j of the jth-laser

and the slow space variable J - J/N. We obtain a Ginzburg-Landau-type

equation of the form
a Aa + Ba2a + Ca. + Da (4)

where a denotes the complex amplitude of a spatio-temporal mode, r is slow

time and all the coefficients are complex. The unusual term Ca results from

the fact that the basic steady state solution is a function of the laser

position J. Boundary conditions are important for this problem and differ if

N is even or odd. As N -* , we find

a(O) - a(l) (N even) and a(0) - - a(l) (N odd). (5,6)

If N is even, we have verified that Eq. (4) predicts the amplitude of the
standing wave solution, as previously obtained [7]. If N is odd, the effect
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of the coefficient Ca as well as the boundary conditions (6) is to split

the multiple bifurcation point to standing and traveling wave solutions. See

Figure. The two primary bifurcations correspond to traveling wave solutions

and the secondary bifurcation corresponds to a standing wave solution. Full

lines (dashed lines) mean stable (unstable) solutions. The separation

between primary and secondary bifurcation points is a small O(TI N2 )

quantity. Our results are in agreement with a numerical study of Eqs. (I)

and (2) with N equal to 6 and 7.

Ssw TW
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Two-dimensional optoelectronic device arrays have considerable potential for applications
ranging from the production of high power coherent beams (i.e. 2D laser arrays) to pro-
cessing based on multichannel optical interconnects in neural computation. It is quite
clear, however, that modeling such complex systems with various inter-element coupling
schemes is not an easy task.

In order to abstract some general features of active optoelectronic device arrays we have
examined a model based on the dynamics of the light field in the presence of a saturable
nonlinearity:

dt 1d Qn(t) = •[an - F - 2if•,,]Q,(t) + F,•(K, QI,. , QN), (1)

where the coupling function F,(K, Q1,"', QN) describes various coupling schemes ranging
from nearest neighbour to global uniform coupling to the mean field. For simplicity we
ignore the population dynamics associated with each device, in which case the model can
either be regarded as an array of class A lasers, or as class B lasers (eg semiconductor
laser arrays) if it is understood that only the dynamics on timescales < upper state
lifetime is being probed. This is adequate in determining, for example, necessary (but
not sufficient) conditions for phase locking a semiconductor laser array. Equation (1)
is actually a discretization of the Ginzburg-Landau equation (used extensively in the
modelling of transverse effects in laser dynamics) as in ref.[I]. Here we explicitly allow for
complex coupling which corresponds to control over the phase of the interacting fields -
a desirable feature in practise - as well as different coupling functions. We also allow for
the inevitable technological differences between the coupled elements by imposing various
statistical distributions on their natural frequencies.

Our main interest is in enumerating the global dynamics of this system, for which we
have found it convenient to introduce the "order parameter" defined as

1 NR,,e = Qj. (2)
Nj=1

The amplitude, Ro, broadly categorizes ordered and disordered states according to whether
it is a maximum or a minimum.

The first result is that for most coupling schemes a coupling phase of 1 is the most difficult

to phase lock (i.e. to achieve a steady state output of the array). This is illustrated in fig.



ThB6-2 / 301

1 which shows the variation of the order parameter as a function of coupling phase and
indicates the transition point at 2 beyond which disordered states prevail. For the case of
uniform coupling it is possible to prove this result analytically in the thermodynamic limit
of an infinite number of oscillators (which we emphasise is distinct from the continuum
limit) presented here for the first time. The significance of this result is that the phase
of L corresponds precisely to evanescent waveguide coupling and thus it can be expected
that if this is the dominant coupling mechanism, phase locking will be difficult, unless
special measures are taken. It is also interesting to observe that the fluctuations of the
order parameter defined as

AR. = (R2 - Ro)2, (3)

and shown by the broken line in fig.1, are maximal at the phase transition point.

Near the phase transition points we have also observed order localization phenomena as
illustrated in fig. 2. This feature emerged rapidly from random initial conditions and can
be long-lived, depending on the strength of the cou,,1 ig. It is associated with nearest
neighbour coupling and as with phase transition physics in other fields, it appears that the
order-disorder transitions in this systcm can be associated with divergence of correlation
lengths. As well as giving examples in which multiple "defects" are formed, we will present
the parameter identification of the correlation lenigths 1,i this system.
In terms of the possible applications that this system provides, the emergence of spatial
structure in the arrays has been shown to related to the coexistence of multiple attractors
in the system [1]. Furthermore, it has been suggested [2] that these locatized regions can
themselves regarded as information pixels capable of define a flexible optical memory.
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Fig. 1: Order parameter Ro, and its mean squared deviation, AR, = (RI - Ro) 2(broken line) versus coupling phase O (shown in unit of ir). 0 = • is a transition
point beyond which the system displays total phase unlocking. Order parameter
fluctuations are peaked at the transition point.
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Network of Chaotic Elements
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1 Introduction

Network of globally coupled chaotic elements is important not only as a model for
nonlinear systems with many degrees of freedom, but also from the viewpoint of
biological information processing and possible engineering applications.

In nonlinear optics, many modes are interacting through energy source. Each
mode can be chaotic for some parameters, and a multi-mode optical system pro-
vides an example of globally coupled chaotic elements. Other examples in physics
includes the dynamics of vortices in fluid, Josephson junction circuits or charge
density wave coupled through electric current.

In neural dynamics, it is known that even a single neuron or a small ensemble
of neurons can exhibit chaos. Consequently, the dynamics in the brain consists
of an ensemble of elements with complex dynamics and complex coupling. Most
of current neural network studies, however, use oversimplified local dynamics (0-
1 or a sigmoid function). It is important and of interest to study a model with
nontrivial dynamics ( with chaotic response) with simplified global coupling, as
another abstraction from neural dynamics. In the dynamics of evolution, constraint
from the "environment" leads to a globally coupling. Each species interacts with
every species through the environment.

In the talk, we discuss novel aspects in a network of chaotic elements with the
use of "globally coupled map" (GCM). A typical example is given by

X,+1(i) = (1 - 0)f(X-(i)) + -Ef(x(i)) (1)

where n is a discrete time step and i is the index of an element (i = 1, 2,-.--, N=
system size). We choose mostly the logistic map f(x) = 1 - ax2 , as the simplest
model for globally coupled chaotic systems.

The model is a mean-field-theory-type extension of coupled map lattices (CML),
extensively investigated as a prototype model for spatiotemporal chaos. Our dy-
namics (1) consists of a parallel nonlinear transformation and a feedback from
the "mean-field". The dynamics (1) is equivalent to y,•+ 1(i) = f((1 - €)y,(i) +

- Z=I yn(j)), as is seen by the transformation yn(i) = f(Xn(i)). In this form,
one can see clear correspondence with spin glass or neural nets: If one chooses a
sigmoid function (e.g.,tanh(fix)) as f(x) and random or coded coupling term €,.,,
SG or neural nets follow.

2 Clustering of Attractors and Phases

The simplest attractor of eq. (1) is a coherent one with x(i) = x(j) for all i,j. For
the attractor, the motion is governed just by the single logistic map x,+ 1 = f(Xn).
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The stability of this attractor is given by A0 + log(1 - c) < 0.
Besides the above single-clustered coherent attractor, we have attractors with

clusterings. Here a cluster is defined as the set of elements in which x(i) = x(j).
Attractors in our GCM are classified by the number of clusters k and the number

of elements for each cluster N1. Each attractor is coded by the clustering condition
[k, (Nl, N2 ,--,Nk)].

The dynamics of a k-cluster attractor with (N1 , N2 ,.', Nk) is written by the
k-dimensional map:

k

+- (1 - )f(X) + Ci: Ef(X ) (2)

where Xn" denotes the value of xn in the v-th cluster, and the "effective coupling"
CIA is given by c, = c x (Np/N).

Our model has the following phases with the change of nonlinearity and cou-
pling.

(i) Coherent phase: The coherent attractor (k = 1) has occupied (almost) all
basin volumes.

(ii) Ordered phase: Attractors (k = o(N)) with few clusters have occupied
(almost) all basin volumes.

(iii) Partially ordered phase: Coexistence of attractors with many clusters
(k = O(N)) and few clusters.

(iv) Turbulent phase: All attractors have many (k = O(N); in most cases
k ; N) clusters.

3 Hierarchical Clustering

In partially ordered phase, we have often encountered with an attractor with a
single large cluster and many small clusters (e.g., N, = (N/2, 1, 1, ... , 1)). For this
type of attractor, the distance between two small clusters I X" - X, I (p, V > 1 )
is much smaller than the distance between the large cluster and one of the small
clusters; I X 1 - X' 1. To discuss this kind of structure, we have introduced
the notion of precision-dependent clustering, by defining the "coarse-grained
measurement of zx(i) by Y:'(i) - [P x x,(i)]/P where [..-] is the integer part of...
and P is an integer for the precision. The precision-dependent clustering is defined
by the clustering for -9:(i). The precision-dependent cluster number k' gives the
effectived degrees of freedom up to the precision. As the precision is increased,
the clusters spilt till their number kV increases up to k. This branching is uniform
in the turbulent region, while it is strongly non-uniform in the partialy ordered
phase.

In the partially ordered phase, the partition by [N1 , -- -, Nk] is also strongly non-
uniform. To study the non-uniformity of partitions we introduce the probability
distribution of partitions, which is given by ir(Y), where Y =Z-'(N,/N)2 . This
probability 7r(Y) gives the variety of partition by clusters.
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4 Chaotic Itinerancy and Hierarchical Dynam-
ics

Our system leads to a hierarchical dynamics. In a hierarchical dynamical system,
there are many units of different levels, organized in a tree structure. A unit
interacts strongly with the other units of the same level, and is slaved by the unit
of its upper level, with small feedback to the upper level. The upper/lower level
is defined according to the precision. The lower-level cluster is influenced by the
upper-level cluster, but there is a flow from lower to upper level if chaos is strong
enough, leading to the hierarchical dynamics.

When the effective degrees kP are low, a low-dimensional ordered motion emerges
from a high-dimensional dynamics. Our system exhibits the intermittent change
between the self-organization towards the low-dimensional structure and its col-
lapse to a high-dimensional disordered motion. This type of dynamics has recently
been found in optics by Ikeda, Otsuka, and Matsumoto, and in a model of neu-
rodynamics by Tsuda, as have been coined the term "chaotic itinerancy" (over
attractor ruins). The detaild dynamics will be discussed in the talk.

5 Violation of the Law of Large Numbers

Our mean-field Ej f(x(i)) fluctuates in time. In the turbulent phase, if x(i) takes
almost random values almost independently, one might expect that the aggregate
h -- (I/N) Ej f(x(j)) obeys the law of large number and the central limit theorem.
If this were the case, the variance of the mean-field would decrease as 1IN with N.
We have measured the distribution of mean field h = (1/N) E, f(x,,(i)), and have
found that the fluctuation of the mean field remains even in the limit of N --+ oo.
This observation suggests the emergence of hidden coherence in our system. The
coherence should be hidden in nature, since the cluster number agrees with N.

In the talk, clustering bifurcation, partition information flow, and some exten-
sion of globally coupled maps are also given as well as some relevance of network
of chaoric elements to the (biological) information processing.
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It is common to quantify chaos through determination of certain

invariants. Among experimentalists, the most popular ones are the

attractor dimension D2 and entropy K2 with an algorithm by

Grassberger and Procaccia /I/ and the largest Lyapunov exponent

with an algorithm due to Wolf et al. /2/.

Before it even comes to that, one has to determine whether an

observed irregular signal is determistically chaotic, or indeed

stochastic. Calculation of above quantities is not helpful for

this decision because for random numbers, the first algorithm may

and the second certainly will fail to indicate that the data is

not chaotic.

Theiler et al. /3/ recently proposed a method that builds on these
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algorithms but enhances them by a quantitative criterion about the

statistical significance with which deterministic structure can be

detected in the signal. This is achieved through comparison of

results computed from the original data with those from a number

of so-called surrogate data sets, i.e. copies of the original data

set which are suitably randomized such as to keep the power

spectrum but to destroy the deterministic structure. If results

from original and surrogates do not differ (in terms of standard

deviations from th'- - _an of the surrogate spread), then most

likely there was no deterministic structure in the original

either.

We test this proposal with real world data from quantum optical

experiments. One is a resonator filled with spin ½ atoms inter-

acting simultaneously with an optical and a weak magnetic field.

This system is known to exhibit low-dimensional chaotic behavior

/4/. The other experiment is about Brillouin scattering of cw

light in optical fibers, which gives rise to an irregular temporal

intensity variation. There is a dispute whether this structure is

chaotic /5/ or stochastic /6/.

We find that the method works extremely well if applied to

dimension or entropy. Data of established chaotic nature is

identified as such with high significance (like ten or more

standard deviations). The dispute about Brillouin scattering is

resolved.
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On the other hand, the method fails to give consistent results if

applied to the largest Lyapunov exponent. This surprising failure

can be explained easily by re-examination of the fine difference

between the mathematical concept of Lyapunov exponents and the

inner workings of the Wolf algorithm. In particular, it becomes

obvious that for random signals, the Wolf algorithm merely gives

information on the power spectrum.
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SUMMARY

We present a novel nonlinear optical effect which arises in a spatial structure

of electromagnetic field. Our analysis establishes also, for the first time, a link

between the fields of spatial instabilities [1] and of quantum noise reduction [2,3],

in nonlinear optical systems.

The phenomena of spontaneous spatial pattern formation in nonlinear dissipa-

tive systems has been object of study since many years [4,51. In particular, the last

decade has shown an increasing interest in the spatial and spatio-temporal effects

which arise in the structure of the electromagnetic field, in the planes orthogonal

to the direction of propagation [1]. For example, it has been shown that passive,

nonlinear optical systems can give rise to the spontaneous formation of roll, or

hexagonal, or ring patterns [6,7,81.

Both in and out of Optics, the analysis of these phenomena has been limited

to a purely classical description. We show, however, that in the case of the model

formulated in Ref. 9 one can provide, in a rather straightforward way, a quantum

mechanical formulation. The model [9] is presumably the simplest equation that

predicts phenomena of spontaneous spatial pattern formation in an optical system.

It describes a Kerr medium contained in an optical cavity and driven by a plane-

wave coherent field. It has been shown that this model predict the onset of rolls

[9] and of hexagonal structures [10] in the transverse planes.

In order to start the analysis of quantum mechanical aspects, we focussed on

the simplest case of rolls pattern, which is shown in Fig. la in the near field
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and in Fig. lb in the far field, respectively. We calculated the spectrum of the

quantum mechanical fluctuations in the intensity difference between the two sig-

nal beams S and S' (Fig. 1b), a quantity that can be measured early because

the two beams are spatially separated in the far field. We obtained a simple

analytical expression which is graphed in Fig. 2. The fact that the value of

the spectrum S(w) are smaller than 1 indicates that the fluctuation are be-

low the shot-noise level and the fact that S(w = 0) = 0 shows that there is

complete suppression of quantum noise in the intensity difference for zero fre-

quency. The analytical formula for S(w) coincide exactly with that for ttie spec-

trum of fluctuations in the intensity difference between the signal beams in the

optical parametric oscillator [11].

In conclusion, we showed that the two signal beams of the roll pattern are

quantum correlated twin beams, exactly as those emitted by an optical paramet-

ric oscillator. This results shows that our optical dissipative structure (the roll

pattern) is ordered not only from a spatial viewpoint, but also on a quantum

mechanical level.
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Figure 1: Roll pattern in the transverse plane (a) near field; (b) far field.
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Figure 2: Spectrum of the quantum fluctuation in the intensity difference between

the two signal beams of the roll pattern.



316 / FA3-1

The Influence of Noise and of Spatio-Temporal Nonuniformity
on the Evolution of Optically Nonlinear Systems

H. 1I0ler, S. Apanasevich 1 , J. Grohs, A. Lyakhnovich 1 , M. Kuball,

J. Steffen, C. Klingshirn

University of Kaiserslautern, Department of Physics, Erwin-Schr6dinger-Strafe,
D-6750 Kaiserslautern, Germany, Phone -631 / 205 3112, Fax -631 / 205 3300

1 Division for Optical Problems of Information Technology,

Academy of Sciences, Minsk, Republic of Belarus

The investigation of noise induced switching processes in bistable systems is a field of active
research [1] due to the omnipresence of noise in real systems. In this paper we extend the
research on the influence of noise on the self oscillations of a hybrid ring resonator containing
an optically nonlinear or even bistable element. The optically nonlinear element is a ZnSe
interference filter showing thermally induced nonlinear refraction [2]. The quasistatic input-

output characteristics (IOC) of the filter in reflection and transmission depend on the initial
detuning of the Fabry-Perot and by changing this parameter it is possible to obtain bistable as
well as monostable but strongly nonlinear behaviour. This element is incorporated in reflection

mode into a ring resonator with long round trip time compared to the thermal relaxation time
of the nonlinearity. The resonator is a hybrid one consisting of a photodiode transforming the

light intensity reflected by the filter into a voltage signal which is delayed electronically and fed
back to an electro optical modulator controlling the light falling onto the sample.
Using the photo thermally induced absorption nonlinearity in CdS in conjunction with such a
kind of resonator [3] self oscillations of the light intensity in the resonator have been found. The

oscillations are mode locked into multiples of the resonator round trip time. There are basic

modes with a single maximum per oscillation period and higher modes with more maxima. The
transitions between different oscillation modes are given by the Farey-tree structure. Due to
the flat lower branch of the IOC used in [3] the basic modes had only one decreasing step in the

resonator intensity, and of higher modes only the second Farey-tree generation was observed.
In the present case we can detune the dispersive nonlinear element by changing the angle of
light incidence to achieve an IOC with a broad bistable region and higher steepness of the lower
branch as it is shown in the inset of Fig. 1. The figure itself shows the oscillation mode obtained
with this IOC in the ring resonator with a delay time rd = 200 ms much longer than the typical

relaxation time of the nonlinearity of about 100 ps. One can realize that there are three different

maxima (two have nearly the same value) during the whole oscillation period of 6 rd. This means
that the mode of Fig. 1 belongs to the third generation of the Farey-tree. Additionally, in this

mode the lower maximum is due to the part of the lower branch of the IOC with a negative

slope.

Using an IOC as it is shown in the inset of Fig. 2 with an almost disappearing bistable region
and thus with a very steep middle part we can observe the noise induced destruction of the
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0 5 10 15
Figure 1: Stable oscillation mode with 3 dif- /r
ferent maxima per period, i. e. third genera-
tion of Farey-tree structure.

mode locked oscillations (Fig. 2, left side). The destruction occurs when the system reaches the

critical region of the IOC with a high steepness where the external fluctuations are amplified

and, being fed back, lead after some round trips in the resonator to noise induced switching

processes. This phenomenon can only occur if the noise spectrum has prominent components at

frequencies lower than the inverse response time of the nonlinear element [4]. The simulation is

carried out on the basis of an ordinary differential equation for the temperature in the center of

the laser spot. Without external noise or in presence of noise containing only too high frequency

components the simulation indeed shows a mode locked oscillation, and only with low frequency

fluctuations of sufficient amplitude the experimental observation is modeled quite adequately as

can be seen from the right side of Fig. 2.

| ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ T I I ! ! ! ) i Ii , i I i I ! I
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t/ Td t / Td

Figuie 2: Starting from an empty resonator the mode locked oscillation bound to the delay time
is destructed after about 10rd by noise (left: experiment, right: simulation).

Apart from temporal changes of the light intensity the nonlinear behaviour may be also influ-
enced drastically by the spatial nonuniformity of the switching process [5]. Further understand-

ing of the latter aspect is gained by taking into account the transverse distribution of light and
temperature in the nonlinear element. Because of the longer relaxation time and thus better

experimental accessibility we now use the thermally induced absorption nonlinearity in CdS.
In longitudinal direction the problem can be regarded as homogenuous because of the small

thickness of the sample of some microns compared with the thermal diffusion length of around
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100 microns.
We use a gaussian holding beam with a diameter of about 200 microns and a power level within
the bistable region of the hysteresis loop. The crystal is in the low absorbing state. By injecting
a temporally (tp = 2ms) and spatially (d=20 •m) small pulse we induce a partial switching of
the crystal, i. e. minimum transmission in the center of the spot. The resulting spatiotemporal

dynamics depends on the energy of the switching pulse deposited into the sample and on the
power level of the holding beam. First, the switched area spreads in radial direction but then it
may contract again depending on the energy deposited by the switching pulse. The contraction
may be up to nearly zero radius, showing again a bell-shaped profile of the transmitted intensity
but with lower overall value. The induced temperature profile may be metastable.
After this, the system relaxes to its final state either on the high or low absorbing branch of
the bistable loop depending on the energy of the short pulse. The closer the pulse energy is
to the value just necessary to induce full switching the longer is the lifetime of the metastable
state (typically several ms). This behaviour can be seen in Fig. 3 in the case of a sufficient pulse
energy to induce full switching. The radius of the switched area is given as a function of time.
The contraction of the switched area and the arise of the metastable intensity profile may be

150.0

S100.0

Figure 3: The radius of the high ab-
sorbing area of the holding beam as
a function of time. The short pulse .0 50 . 1O.0 15.0 20.0

is switched on at t = 0 ms. time in ms

attributed to the presence of the third unstable branch in an optically bistable system. To get a
closer correspondence to the three-dimensional relaxation like in the interference filter further
investigations will concern the spatio-temporal dynamics of CdS crystals on different substrates.
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The transient evolution of the output of a single-mode class B laser (SML) after it is

switched-on has been characterized from an experimental point of view by the evolution

of the output intensity,[1, 2] both in the linear and non-linear regimes. However, from a

theoretical point of view the characterization of the transient statistics of a SML beyond

the linear regime has not been considered in detail.[3-5] Nevertheless, it has been possible to
analyze both the linear and non-linear regimes for class A lasers,[6] showing that the transient

statistics during the non-linear regime constitute a mapping of the transient statistics in the

linear regime. In this case, an approximate solution for a switch-on event can be constructed

(QDT approximation, [7]) which allows to examine the correspondence between the transient

statatistics in both regimes. The main difficulty for a SML arises from the fact that no
analytical solution of the deterministic rate equations is known, though it has been shown

numerically[3, 4] that the QDT approximation succesfully explains the transient statistics in
both the linear and non-linear regimes. Accordingly, we expect that the transient statistics in
the non-linear regime can be understood as a mapping of the Passage Time (PT) statistics.

The reason is that the random PT r - defined as the time when the intensity reaches a
reference value I, - determines both the beginning of a deterministic stage of evolution and

the initial conditions for this period,[3-5] which lasts until the vicinity of the asymptotic

steady state is reached.

The PT statistics for a SML can be analytically calculated since they involve only the
first stages of evolution, when the intensity is small and a linear approximation holds.[3, 4]

Nevertheless, different results are obtained according to whether the SML is gain-switched

or Q-switched. In order to clearly distinguish the two cases, the stochastic rate equations

equations can be conveniently written in adimensional form,

a'z_= + 1 z l 1( 2  1 L(-)) + 2(i _+rq2 A) 2 (Tr), (1)

A-= C + A(r) - A l+ Iz2- .2 /2(l+ 2 A)[z*G(r) + z(r)] (2)

where z is the scaled complex amplitude of the laser field and A is the population inversion

scaled to its threshold value. In the case of Q-switching, A(r) = 0 and L(r) = Lo 1E)(-r) -
Lo, E(r), while for gain-switching we have L(r) = 0 and A(r) = -AffE(-r) + A0 eO(r). ý,(r) is a

complex white noise of zero mean and correlation

< ý, (r)ýý* (r') > = 26 (r - r')
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modelling spontaneous emission. An approximate solution to the stochastic rate equations
can be constructed for both r < r* and r > r*. For r < r*, the complex electric field is
small and its evolution is dominated by spontaneous emission, and the population inversion

increases independently of the intensity. For r > r* and until the vicinity of the asymptotic
steady state is reached, the system evolves unaffected by spontaneous emission noise. There-
fore we have that the evolution of the system during the transient non-linear regime is given

by
dx
d-- = f (X, A) (3)

where x = 1zl, with initial conditions

r=rT = {A=A(r*) (4)

Equations (3) and (4), which are equivalent to (1)-(2) in the domain of validity of the QDT
approximation, determine the non-linear mapping of PT statistics into the transient statistics
for the non-linear regime. The reason is that (3) defines an autonomous system which is
completely determined by the initial condition (4), and provided that the whole influence of
spontaneous emission noise is contained in the initial condition (4), the statistical properties
at any time are determined by those at the PT, and in particular by the PT statistics. It
has to be noted that (4) defines a random initial condition for A at the random time re, but
their statistical properties can be calculated in the linear stochastic regime.

The statistical properties of any function y of the dynamical variables x and A are
therefore determined as a time-dependent mapping of the PT statistics. However, if we are
interested in e. g. the statistical properties of the extreme values of this function, the time

dependence can be eliminated, yielding

Yexreme = F [Xr, A(r*)] (5)

Therefore, the statistical properties of Yetre,,e can be determined from those of the PT. In
particular, the variance of the PT distribution for SML is rather small and then a linear
expansion in r" holds, and so we find that the statistical properties of Yetrm, are given as a

linear transformation of those of the PT.

From such analysis we show that the maximum intensity and the extreme values of the

SML frequency during each switch-on event depend linearly on the turn-on time for this
particular event. In addition, these quantities scale with the pump rate so that they are

given as

Yextrerne =< Yextreme > +a(G)Aon(r*- < r* >) , (6)

where the parameters a(a) can be calculated from the rate equations. They depend only on
the saturation parameter a. Numerical evidence of these relations is provided. The main
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consequence is that the statistical properties of extreme values of the dynamical variables in

the non-linear regime can be obtained by a linear transformation of the PT statistics.

An analytical determination of the coefficients a(a) is not possible since it requires the

solution of Eq. (3), which is not known. Nevertheless, assuming that the evolution of A

during the peak is governed by its coupling to the laser field, an approximate equation is

found that yields approximate values for a(u) which agree with those resulting from the

simulation.

Finally, we also show that the main difference between gain-switching and Q-switching

is the opposite sign of the slopes a(a) for the same magnitude. The reason is that, during a

Q-switching event, the population is almost completely inverted, and the later the PT, the

lower its value. However, in gain switching we have that the population inversion is growing

due to the action of the high pump until the PT, so that the later the PT occurs, the higher

the population inversion.
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In this paper we report experimental evidence of two-peaked
transient time statistics in a single mode CO laser and we show that

2
this phenomenon is due to the population inversion fluctuations. The

same statistical feature has been also observed in dyes and• 2

semiconductor lasers. However, in the first case two-peaked passage
time distributions arise from the coupling between two transverse

modes, while in the second case they are induced by the correlation

between two successive pulses.

The experimental set up consists of a single mode CO2 laser. The
cavity losses are switched by an intracavity electro optic modulator.

At t=O the cavity loss parameter k is changed from an initial high
value k° to a final low value k,. The laser output pulse is detected

with a Hg-Cd-Te photodiode having a rise time less than 10 ns. The

threshold photon number n, at which the passage time is measured, is
set to n=I /23, where I is the saturation value.

Interesting phenomena appear when the initial state is set,
adjusting the excitation discharge current, close to the laser

threshold. In this case, first passage time distributions with two
peaks are observed, as shown in Fig.l which corresponds to initial

laser states ±0.6% from threshold. The two-peaked distributions are

observable in a range of current of about 0.08 mA which is larger than

the current stability of the power supply (± 0.005 mA).

The class B laser dynamics can be described by two equations for the
complex field amplitude E=iElexp(iO) and population inversion A
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dE E 2GAE 1/2

dA (A-a ) -M IE12+(R) 1 / 2 C(t) (2)

where k is the decay rate of the field, A0 is the population inversion
provided by the pump mechanism, G=4.6X10- 1S-1 is the field-matter

coupling constant 3 and 7=l.0X10 4 s-1 is the population decay rate. C(t)
and C(t) are two uncorrelated stochastic functions with zero mean

value and 8-correlated.
In order to compare the experimental results with the model, we have

performed numerical simulations of the stochastic rate equations (1)

and (2). The following parameter values are used: k0=l.12Xl07 s-,
6 -1 9 -1 29 -1k,=7.5OXlOs , GN2=2.OXl0s I, R=6.8X10 s . A° is estimated via the

relation A0=Mi (where i is the discharge current and M=7.39X0 1 3 nmA- 1

is a coupling constant 3 ).
Figure 2 shows the simulated passage time distributions in presence

of population inversion noise, while in Fig. 3 we report the numerical
results with R=O to confirm the essential role played by the
population noise in determining two-peaked distributions.

A theoretical interpretation of this phenomenon can be given making

some assumptions about the field during the preparation phase (t<O).
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Fig.l. Experimental passage time distributions.

200 400 ,

c160 (a) c 320  (b)
o 0

120 •240

80 160

E E
40 80

0 0
0.0 1.0 2.0 3.0 4.0 5.0 0.0 1.0 2.0 3.0 4.0 5.0

Passage Time (As) Passage Time (Ais)
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I. Introduction
The behavior of chaotic system described by a differential difference equation (DDE) with a
low dimensional mapping has been extensively studied.'1 ,21 However, the details of the
dynamic behaviors especially for a multimodal mapping have not yet been fully understood.
It is clear that the usual linear stability analysis can not work for this case, since more than
two equilibria exist in the dynamics of the system.

The purpose of this paper is to present some novel results in a chaotic system whose
dynamics can be described by a DDE with a multimodal mapping. The physical model is the
active interferometer proposed by the authors recently.[31 With an appropriate choice of the
control parameters, we can easily realize the multimodal regions in the laser output power.
For the case of a small delay time, the output power in such region shows a relaxation-like
oscillation. With the increase of the delay time tr, the waveform evolves into a steady state
oscillation which has the period near the delay time. We call this new type of oscillation
period-one oscillation to distinguish such as period-2tr, 2tr13, 2tr15,... oscillations in usual
period-doubling bifurcation scenarios. The experimental results are coincide with the
numerical simulations calculated from the corresponding DDE

2. Theoretical Model and Simulation
The experimental model for our system is shown in Fig. 1. The light output from a laser
diode is directed into a Twyman-Green interferometer. The interference signal is detected by
a photodiode and fed back into the injection current to the laser diode. The feedback loop
consists of an amplifier and a digital delay circuit. The important point is that the laser
output power is nonlinearly converted to the injection current through the interference signal
and, accordingly, the relation forms the nonlinearity of the whole system. The dynamics of
such system can be described by a DDE as

rdX(t)+
T--d-- + X(t) = Pb,- pX(t - tr){1 + bcoslr X(t - tr) - 401}, (1)

where X(t) is the time-dependent laser output power at time t and T is the response time of the
system. PI, represents the bias output power of the laser diode and is linearly proportional to
the bias injection current. p is a measure of the damping factor for the light output power in
one open feedback loop and can be controlled by the feedback gain. x' is a parameter
proportional to the optical path difference of the interferometer arms. b and 40 are. the
constants of the system.

Generally, the periodic term in the right hand-side of above equation yields the multimodal
mapping when the differential term can be disregarded. In this paper, we discuss the
behavior of the system in which more than two humps are involved in the output power
regions. Fig.2 schematically shows a multimodal mapping having two equilibria pl and P2
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within the range of the output variations. We numerically calculated the output power from
Eq.(l) and investigate how the output power varies when the differential term in Eq.(1) is
taken into consideration.

Fig.3 shows the main results of the numerical simulations. In Fig.3, Pb is fixed at
1.29mW and the delay times are set to be 2.7 and 5.0 (in unit of the system's response time
T) for (a) and (b), respectively. The other parameters are fixed as p--0.4, b=0.8, K=4.87r,

and 0--0. The waveform in Fig.3(a) is a relaxation-like oscillation with the period of the
envelope being 48.76tr The fine oscillation having the period near the delay time can be
also seen in this figure. When the delay time is increased, the relaxation oscillation
disappears and the output power is dominated by the period-one oscillation as is shown in
Fig.3(b). The calculated period of the oscillation in this state is 1. 11 tr

3. Experimental Results
The light source used in the experiment is a single mode laser diode of a 5mW maximum
power with a 780nm oscillation frequency. In the experiment, we fixed p at about 0.4 and
the optical path difference of the interferometer arms to be 0.9cm which results K being

4.8hirmW 1 1. The bias injection current to the laser diode and the delay time are varied to
search the regions for the relaxation-like and period-one oscillations. It is found that for a
fixed delay time, such region and the normal region appear alternately. Here, the normal
region means the region in which the usual period-doubling bifurcation schemes are
observed. The same results are also obtained in the numerical simulations.

Fig.4 shows two instances for the experimental results at two different delay times.
Fig.4(a) and (b) are the results for tr--0.5 and I.Oms, respectively. The periods for the
relaxation and fine oscillations in Fig.4(a) are measured to be 11.70 and 0.56ms,
respectively. The period of the period-one oscillation in Fig.4(b) is 1.08ms. As expected
from the simulation, the output power evolves into the period-one oscillation when the delay
time increases. It is noted that, in comparison with the simulation results, the phenomenon
of frequency locking can be seen in the waveform in Fig.4(b). With the further increase of
the delay time, even the second harmonic solution of the period-one oscillation can be
observed not only in the simulation but also in the experiment. We also investigate the
dependence of the duty ratio of the period-one oscillation on the control parameters.

4. Summary
We have observed the relaxation-like and period-one oscillations in the light output power in
a chaotic system which consists of a laser diode active interferometer. The dynamics of such
a system is described by a DDE with a multimodal mapping. The simulations agrees well
with the experimental results. Obviously, such relaxation and period-one oscillations can
not be explained by the counterparts in the discrete mapping. This phenomenon implies the
fact that the coupling between the discrete and continuous properties of actual physical
system leads to very complicated dynamical behaviors of the system output.
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Chaos in simple optical systems can be caused by a number of known mechanisms such as time delays or
modulated parameters, or by more intrinsic effects like Rabi oscillations - described by the "Laser-Lorenz
equations" - or by the light shift in conjunction with an external magnetic field. We show that the effect
of radiation trapping, i.e. the reabsorption of fluorescence light, can produce chaos as well.

The system we study is a sodium-filled Fabry-Perot resonator that is known to show self-oscillations
due to spin precession in the ground state under the influence of a transverse static magnetic field [1].
These oscillations can become chaotic if the magnetic field is not perpendicular to the optical axis [3]. In
the experiment we observe wide parameter ranges of irregular behaviour, chiefly a range of quasiperiodic
oscillation followed by period-doubling into chaos [4]. After running through the sequence described, the
system will switch into a state of high transmission, in which further oscillatory behaviour including chaos
is possible. The experiment shows that upon this switching, the former nearly Gaussian transmitted beam
changes to a transverse structure that can be described as a superposition of low-order Gauss-Laguerre
or Gauss-Hermite modes. Its exact shape was not reproducible, since it depends on very small alignment
inaccuracies. For that reason, we inserted an aperture into the resonator to prevent premature mode
switching and restricted our measurements to the region before the switching. As this proved to have no
influence on the dynamical behaviour in this range, there is no transverse dynamics dominating these
nonlinear oscillations.

The two regions of chaotic behavior corresl)ond to two different ranges of the resonator phase. In Fig. I

, I , I , I I ,

-0.6 -0.4 -0.2 0 0.2 0.4 0.6

•o rad]

Figure 1: Resonance curve of the Fabry-Perot resonator as a function of the total resonator phase
shift (see text). Shown are typical phase ranges covered during oscillation for radiation-trapping

induced chaos (left hand slope) and light-shift induced chaos (right hand slope).
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the resonance curve (Airy function) of the resonator is showni, its argument being the total resonator
phase shift ýp. This quantity consists of a linear component ýo, determined by the optical round-trip
length in the absence of nonlinear effects, and a nonlinear component ýn,, depending on the dynamical
variables. The high transmission state corresponds to a phase range near the top of the maximum, for
positive values of p, while the oscillations before the switching take place in a range of negative p. In
the experiment, a distinction between both types is possible via phase scans and by differences in the
signal shapes, especially in the modulation contrast.

Dimension estimations performed on about a hundred measured time series show that attractor
dimensions do not exceed a value of about 2.3 for both types, suggesting that the fundamental dynamics
of each might be contained in 3-dimensional models. The microscopic model presented in [1] and [21,
however, involves the three cartesian components of the spin expectation value in the ground state
plus the population of the excited state - unless its decay constant is large enough to permit adiabatic
elimination. It has recently been shown by Boden et al.[5] that a reduced model comprising only the
ground state polarization shows chaos on the right slope of the Airy function, and that in that model
light-shift is the predominant physical mechanism.

Introducing phenomenologically the effect of radiation trapping [6], i.e. the reabsorption of fluores-
cence light, adds an incoherent pump mechanism that acts destructively on the ground state orientation
and simultaneously leads to a seemingly longer lifetime of the excited state population. Thus it provides
a strong nonlinear coupling between the excitation and the spin component parallel to the optical axis.
There is a striking quantitative agreement between simulations using this model and the experimental
measurements on the left side of the Airy function (Fig. 2), in particular in attractor dimension and
entropy values.

00 0 3 a 9 12 ps is 0 3 6 9 12 P3 s t

Figure 2: Measured (left) and simlilated (right) time series of chaos of the radiation-trapping type.

It is also possible to reduce the model to three dimensions by considering instead a purely transverse
magnetic field and completely neglecting the light-shift contribution. The remaining variables are the
two spin components perpendicular to the magnetic field and the excited state population. Performing
the simulation using this second reduced model yields - without changing the values of any parameters -
qualitatively the same behavior as the full four-dimensional model. Thus the effect of radiation trapping,
although introduced here in a most simplified way, turns out to be responsible for the generation of the
new type of chaotic behavior in sodium-filled Fabry-Periot resonators studied here.
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Summary

In nonlinear optics the transition to high dimensional chaos is realized
either by letting many modes to compete in an optical resonator [1] or by in-
troducing a delayed feedback [2]. Whenever data can be organized on a two
dimensional domain, some hidden features of the complex dynamics appear ex-
plicitely as suitable patterns.

We make use of an equivalent two dimensional representation to orga-
nize the data provided by an experimental system with DD dynamics (delay-
differential). This data reorganization sheds light on two non trivial types of

correlations.

The experimental system consists of a single mode C0 2 laser with an

intracavity loss modulation driven by a signal proportional to the output laser
intensity. In the feedback loop from the detector to the modulator we insert a
delay line and an amplifier. The chaotic laser intensity had a correlation time

T. of a few tens of microseconds.

Here we investigate what happens when we insert a delay r = 1, 400tis,
that is, ten times longer than T,.

By measuring the time correlation over long times a new feature appears.
While the correlation function decays over a T, varying over tens of microseconds

it has a revival after a time 7. In such a case, the interplay of nonlinearity and
delay implies two different relevant time scales.

A two dimensional re-organization of the data follows closely the numerical
technique which solves DD equations [3]. The state of a DD equation such as

.i(t) = F n(ctit). x(th- .)) (1)

is determined by all the values of the function .x in tile interval (t. t - r). This
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function can be approximated by N samples taken at intervals At = T/(N - 1).

The evolution consists in a N-dimensional discrete mapping. Choosing the Euler

integration scheme for Eq. (1), that is,

x(t + At) = x(t) + F (x(t), x(t - -r)) At , (2)

the N-dimensional mapping is defined by the generic term [3]

x,(k + 1)-- x-,_8 1 (k) + F [x,-l(k + 1), x,(k)] (3)

where we have denoted by s an index ranging from 1 to N and corresponding to

a single delay interval, and by k a discrete index counting the delay units. Eq.

(3) is completed by two slightly different equations at the boundaries s = 1 and

s = N, as shown in Ref. 3.

The above procedure suggests an organization of the data in a two dimen-

sional "space-time" domain s - k, where the space cell corresponds to a single
delay and the unbounded time is spanned in terms of delay units.

As long as r < To, all points along the s axis are strongly correlated and

hence the two dimensional representation is a pure visualization of the technique

leading to Eq. (2) but it does not bring any physical insight. In contrast,
when 7 >> Tc the points along the s axis decorrelate, and then the correlation

revives after T, as indicated by Eq. (3), yielding a nontrivial two dimensional
representation. An organization of data along these lines (Fig. 1) shows indeed

a cellular structure as in space-time turbulence [4].

Putting a threshold at 0.3 of the maximum pulse height, we obtain (Fig.

2) a digitized space-time picture in black (above threshold) and white (below

threshold). The two dimensional representation provides a visual discrimination

among the different types of chaotic behavior.
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Fig. 1 Cellular pattern obtained by plotting the signal x(;, k) versus s (0 < s < r)

for successive k. The decay of the correlations along s occurs over a time

T, (around 0.1 delay units) while along k correlations last for tens of delay

units.

0 a

512 I,;,! ,d I

01

space s

Fig. 2 Two dimensional representations of the laser signals for different value of

the control parameter. The horizontal axis ranges over one delay unit while

the vertical axis covers 512 dlelay mnits. The black regions correspond to

data above the threshold arid wliitc regions t~o data below the threshold.

Panels h) and c) show chaotic behaviors with (different two dimensional

patterns.Panel d1) corresponds to a locked regime.
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In describing the nonlinear interaction of radiation with matter it is well known that the

perturbation expansion technique is used to calculate the atomic wave functions and the

transitions between the states of a system. However the technique, though involving all states

of the system, is valid only in the limit of weak interaction fields and non-resonant interactions.

For strong fields and resonant interactions, density matrix or dressed atom formulisms are

commonly used though these exact treatments are restricted to simple two level schemes or

approximations of these; their application to general resonant-near resonant multilevel

interactions being prohibitively complex.

In this letter we report on a generalised treatment for the interaction of optical fields of

arbitrary field strengths with a multilevel system. This work is currently motivated by our

susceptibility calculations of multilevel atomic systems, though we foresee the value of this

treatment in wide range of radiation-atom interactions.

In this treatment the Hamiltonian is partitioned into two parts, one forming a dressed

atomic state, the other for excitation between the states. This new formulism (TLH for short)

allows for a natural change in the energy distribution of the two parts of the Hamiltonian

according to the strength of the interaction. On reducing the field interaction strength, the level

characterisation of the dressed states are changed until in the limit of weak field interaction the

level features reduce to those of the unperturbed system. In general both parts of the Hamiltonian

(dressed and excitation parts) exist simultaneously, their relative magnitudes depending on the

field strength, the frequency detuning of the field from the atomic transitions and the degree of
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coherence of the interaction according to the relative dephasing and de-energisation rates.

Significantly for strong fields we find that most of the field energy is taken up in modifying the

states, as for standard dressed states, only in the limit of incoherent interaction, while for coherent

interaction this is limited to at most equal partitioning of the field energy to dressing and exciting

the states.

The formulation is best understood by considering first a simple two level (m,g) system

in which we define the partition parameter 13 such that (1-13)V is the dressing energy and 13V the

energy for excitation. The parameter 13 is determined by the field strength x = a- v = T1 andrT,

the degree of interaction coherence X =L < 2 through the equation

Figs. 1,2 show the curves of (1-J3)x vs. x and 13 vs. x for X. = 2, 0.1, respectively. From these

T,

figures, in the limit of coherent interaction X=-=2, we have 1-13 = J3 = 0.5; one half of the

interaction energy is used for d~ressing and the other half for excitation. In the limit of incoherence
interaction X << 1, it is easily proved that 13 X and a large part (1-J)V is used for dressing,

with a remaining small part, (3V, for excitation.

In addition to eqn. (1), the following corresponding relation between weak field and strong

resonant field interaction is established as:

___13Qt (A-iv)

(2X 22)

Eqns. (1,2) constitute the main relations used to modify conventional theory such that it

can be applied to strong and resonant interactions. For a particular system 13 is determined from

spectroscopic data.
In generalg is this treatment to a multilevel system, we first note that conventional

perturbation expansion theory usually consists of a multiple of factors of the form r--- By the

relation (1), (2) each of these factors can be replaced by a corresponding factor subject to the

conditions that not more than one of the level transitions is resonantly excited, the others being
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off resonant (- >> v). In practice this is descriptive of most real multilevel atomic and molecular

interactions, the treatment thus providing an analytic basis for describing multilevel

atomic-radiation interaction for arbitrary field strengths.
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Fig. 1. Dressing splitting (1-03)x vs. x. (a) . = 0.1, (b) X = 2.

Fig. 2 Partition parameter 5 versus x. (a) X = 0. 1, (b) A. = 2.
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Summary

Modeling, characterization and prediction with regard to chaotic systems has
been an area of vigorous pursuit for many years. Linear methods, such as
Fourier decomposition, do not distinguish chaotic dynamical behavior from noise.
Of fundamental importance is the characterization of the physical system or the
underlying equations from a given time series or phase space attractor, as well as
the influence of noise in coupling across basin boundaries and modifications of
the otherwise purely deterministic dynamics. Local approximation methods in
relation to arbitrary chaotic attractors, in general, are insufficient to deduce the
generating equations and conditions. 1 A forward-feed, hidden-layer, neural
network (FFNN), on the other hand, is manifestly a function generator, and when
trained adequately on a chaotic time series, is shown to constitute a global
approximation to the attractor.2 That is, a FFNN, trained upon a chaotic time
series, becomes a functional realization of that time series, in the global sense.
Furthermore, a FFNN is shown to course grain the noise, in a time series during
training, in the least-squares sense.3 The functional realization property of the
FFNN allows the possibility for data window extension, once it is trained on a
stationary time series, which can be, in fact, a rather narrow window. This is
accomplished in the FFNN by choosing the input, in the form of delay coordinates,
from a portion of the original time series which was not part of the training set,
and then feeding the output into the input; thus, the trained FFNN becomes self-
generating, and facilitates data window extension.

Lapedes and Farber 4 showed earlier that FFNN's with nonlinear transfer
function are quite capable of learning underlying rules from chaos, given even a
short segment of the time series. Their training algorithm, however, uses a well-
known, conventional version of the backpropagation, steepest descents approach
and requires the computational capability of a CRAY. We have derived a new,
unique, fast, and efficient training algorithm that accomplishes training on a 386-
level PC in minutes, or seconds, what requires a half-hour CPU time on a CRAY
using the conventional backpropagation procedure. Thus, our training method
renders the use of FFNN's for chaotic time series analysis and characterization
as practical.

We further extend the work of Lapedes and Farber4 to applications in
nonlinear optical systems, using as models the Lorenz system, Ikeda and Duffing
oscillator, 5 and demonstrate characterization with respect to the phase space
attractors, self-generation (stationary data window extension), and multistep
prediction commensurate with the associated Lyapunov critical exponent. We
also apply our new method of analysis to the study of stimulated Brillouin
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scattered light from a CW pumped optical fiber.6 ,7 Since controversy lingers over
the interpretation of the results of several independent experiments, 7 we use our
FFNN method to clearly demonstrate purely deterministic from purely stochastic
contributions in the SBS temporal evolution using signal generation from the
standard stochastic SBS equations. Results are analyzed for regions of the
parameter space and conditions which include those corresponding to the
experiments. 6 ,7

As a generic example, the method was applied to the chaotic time series
generated from the Lorenz equations. The training data to the FFNN is generated
from integration of the Lorenz equations and in the form of delay coordinates 8 .
The attractor associated with the embedding8 from the time series generated from
integration of the equations is shown in Fig. 1. Shown in Fig. 2 is the
corresponding attractor, self-generated from the FFNN after training, and is
qualitatively the same as in Fig. 1. To this degree, the FFNN has become, through
its training, a functional realization of the integration of the Lorenz system. If the
time series were experimental data, the FFNN trained on the data would be
interpreted as a functional realization of the time series, and thus a
characterization of the system, whereas, the self-generated data subsequent to
training represented in Fig. 2, could be useful as data window extension, which
may be necessary, under experimental conditions, to accommodate the
calculation of such parameters as a Lyapunov critical exponent.
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x i....t)

Figure 1. Lorenz attractor, generated from embedding using the x-variable, from time series
obtained by integration of the Lorenz equations (Ref. 5, page 125) for values of the parameters5

s = 16, b = 14, r = 40. The embedding dimension is d =4, and the embedding time is D 0.01.
The plot corresponds to 2500 pta.

-1 -.- S **~-I -- ,X(

Figure 2. Attractor generated from embedding using time series self-generated from trained
neural network. The training data is identical to that used to calculate results shown in Fig. 1.
The FFNN consists of 4 inputs and one output, with a 44 element hidden layer and fully
connected. A hyperbolic tangent thresholding function was applied to each hidden-layer
neuron. The plot consists of 2500 pts.
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We analyze the physical origin of the gain in all schemes of inversionless amplification
proposed to date and define two different mechanisms responsible for this process.
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As we have shown recently /1/, the efficiency of an optically pumped laser
is strongly sensitive to the structure of the atomic (or molecular) levels involved
in the amplifying process, in particular to M-degeneracy. Specifically, when the
common level b shared by the pump and laser transitions in a typical three-level
configuration (Fig.1) has two sublevels m=+1 and the pump and laser fields are
both linearly polarized (such as in the case, for instance, of the ammonia far-
infrared laser /2/), there is a large difference in the dynamics of the laser when
the pump and laser field polarizations are parallel or orthogonal /1,2/.

To explain the origin of the observed behavior we present in this
contribution an analytical study of this class of laser. For the sake of simplicity
only the case in which the sublevels m=+1 of level b (Fig.1) are degenerate will be
considered.
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b' E

'Up 
EL

a

E41.- Level diagram and fields in an optically pumped laser. a and c are J = 0 levels
and b,b' are m = ±1 degenerate sublevels of a J I level. The circularly
polarized Ep (a+) and E'p (c') pump fields define a linearly polarized field,
and the EL (a+) and E'L (;-) laser fields also define a linearly polarized field
(either parallel or orthogonal to the pump field).

The analysis is performed first in the basis of the bare-atom states:

la>, I b>, Ib'>, Ic>

in which we obtain the stationary solutions in both cases of parallel and
orthogonal polarizations.

The most clear interpretation of the origin of the observed behavior,
however, is obtained when the analysis is performed in the basis of the dressed
states:

lb>, Ir+>, I r_>, I c>

where the first three states represent the eigenstates of the interaction
Hamiltonian in the interaction picture when only the pump field is present. The
state I > is a linear superposition of the bare-atom states I b> and I b'>, whereas
the states I r÷> and I r-> are a linear superposition of the states I b>, I b>, and I a>.
When the (weak) laser field has parallel linear polarization, it connects the state
I c> with the states I r÷> and I r-> (but not with the state I b>), and therefore
Raman pumping is possible. When the laser field is orthogonally polarized,
however, it connects the state I c> with the dressed state I b> only, so that in this
case Raman pumping is forbidden. Furthermore, the population of the dressed
state I b> remains smaller than the (small) population of I c> whenever F < Fth
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(r represents the relaxation rate for the two-photon coherence Pbb' induced by
the pump field, and the threshold Fth is given by an analytical expression), so
that the population excited by the pump field from level a to level b remains
essentially "trapped" in the states I r+> and I r>. Only for F > Fth laser emission
can be achieved.

For F = Yll (i.e. the smallest possible value of F, equal to the longitudinal
relaxation rate yll) the orthogonally polarized optically pumped laser is exactly
equivalent to an incoherently pumped two-level laser (i.e. to a Lorenz-Haken
laser), in the sense that optical pumping is unable to generate laser emission and
only additional incoherent pumping of the upper level could give rise to laser
emission.

It is worth noting that the double-V system here considered (Fig.1) is
exactly the inverted case of the double-A configuration which is being
intensively studied presently /3/ in the context of "lasing without inversion".
Hence it can be said that our system represents an example of polarization-
sensitive "inversion without lasing". Our analysis is more general than those of
refs. /3/ in the sense that the relative orientation of the electric field vectors of
the pump and laser waves has been clearly taken into account. The typical
condition of very small F for the appearance of trapping in the cases of refs. /3/ is
not required here.
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